[1]
F.J. Humphreys, M. Hatherly, Recrystallization and related annealing phenomena, 2nd ed, Elsevier Ltd, The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK, (2004).
DOI: 10.1177/004728759603500115
Google Scholar
[2]
D.N. Lee, Strain energy release maximization model for recrystallization textures, Met. Mater. Int. 5 (1999) 401–417.
DOI: 10.1007/bf03026153
Google Scholar
[3]
S.I. Wright, J.F. Bingert, L. Zernow, Microtextural zones in a copper shaped charge particle, Mater. Sci. Eng. A. 207 (1996) 224–227.
DOI: 10.1016/0921-5093(95)10089-x
Google Scholar
[4]
T. Baudin, A.L. Etter, R. Penelle, Annealing twin formation and recrystallization study of cold drawn copper wires from EBSD measurements, Mater. Charact. 58 (2007) 947–952.
DOI: 10.1016/j.matchar.2006.09.009
Google Scholar
[5]
J.H. Cho, K.H. Oh, A.D. Rollett, J.S. Cho, Y.J. Park, J.T. Moon, Investigation of recrystallization and grain growth of copper and gold bonding wires, Metall. Mater. Trans. A. 37 (2006) 3085–3097.
DOI: 10.1007/s11661-006-0189-5
Google Scholar
[6]
P. Haasen, How are new orientations generated during primary recrystallization?, Metall. Trans. A. 24 (1993) 1001–1015.
DOI: 10.1007/bf02657231
Google Scholar
[7]
Y.V. Khlebnikova, D.P. Rodionov, I.V. Gervas'eva, L.Y. Egorova, T.R. Suaridze, Perfect cubic texture, structure, and mechanical properties of nonmagnetic copper-based alloy ribbon substrates, Tech. Phys. 60 (2015) 389–399.
DOI: 10.1134/s1063784215030111
Google Scholar
[8]
G.M. Rusakov, A.G. Illarionov, Y.N. Loginov, M.L. Lobanov, A.A. Redikul'tsev, Interrelation of Crystallographic Orientations of Grains in Aluminum Alloy AMg6 Under Hot Deformation and Recrystallization, Met. Sci. Heat Treat. 56 (2015) 650–655.
DOI: 10.1007/s11041-015-9816-3
Google Scholar
[9]
G.M. Rusakov, M.L. Lobanov, A.A. Redikul'Tsev, A.S. Belyaevskikh, Special misorientations and textural heredity in the commercial alloy Fe-3% Si, Phys. Met. Metallogr. 115 (2014) 775–785.
DOI: 10.1134/s0031918x14080134
Google Scholar
[10]
G.M. Rusakov, A.A. Redikultsev, M.L. Lobanov, Formation mechanism for the orientation relationship between 110〈001〉 and 111〈112〉 grains during Twinning in Fe-3 Pct Si Alloy, Metall. Mater. Trans. Phys. Metall. Mater. Sci. 39 (2008) 2278–2280.
DOI: 10.1007/s11661-008-9575-5
Google Scholar
[11]
C.A. Schuh, M. Kumar, W.E. King, Universal features of grain boundary networks in FCC materials, J. Mater. Sci. 40 (2005) 847–852.
DOI: 10.1007/s10853-005-6500-9
Google Scholar
[12]
M. Matsushita, T. Kuji, H. Kuroda, S. Aoyama, H. Ohfuji, EBSD Analysis of the Submicron Width Fibber Shaped Grain Copper Fabricated by Drawing, Mater. Sci. Appl. 2 (2011) 911–916.
DOI: 10.4236/msa.2011.27121
Google Scholar
[13]
H. Park, D.N. Lee, The evolution of annealing textures in 90 Pct drawn copper wire, Metall. Mater. Trans. Phys. Metall. Mater. Sci. 34 A (2003) 531–541.
DOI: 10.1007/s11661-003-0089-x
Google Scholar
[14]
H. Park, D.N. Lee, Effects of shear strain and drawing pass on the texture development in copper wire, Mater. Sci. Forum. 408–412 (2002) 637–642.
DOI: 10.4028/www.scientific.net/msf.408-412.637
Google Scholar
[15]
R. Penelle, T. Baudin, Primary recrystallization of invar, Fe-36%Ni alloy: Origin and development of the cubic texture, Adv. Eng. Mater. 12 (2010) 1047–1052.
DOI: 10.1002/adem.201000077
Google Scholar
[16]
V. Randle, Twinning-related grain boundary engineering, Acta Mater. 52 (2004) 4067–4081.
DOI: 10.1016/j.actamat.2004.05.031
Google Scholar
[17]
D.P. Field, L.T. Bradford, M.M. Nowell, T.M. Lillo, The role of annealing twins during recrystallization of Cu, Acta Mater. 55 (2007) 4233–4241.
DOI: 10.1016/j.actamat.2007.03.021
Google Scholar
[18]
N. Souaï, N. Bozzolo, L. Nazé, Y. Chastel, R. Logé, About the possibility of grain boundary engineering via hot-working in a nickel-base superalloy, Scr. Mater. 62 (2010) 851–854.
DOI: 10.1016/j.scriptamat.2010.02.019
Google Scholar
[19]
J.G. Brons, G.B. Thompson, A comparison of grain boundary evolution during grain growth in fcc metals, Acta Mater. 61 (2013) 3936–3944.
DOI: 10.1016/j.actamat.2013.02.057
Google Scholar