Relationship between Deformation and Recrystallization Texture in Copper Wire

Article Preview

Abstract:

Using electron backscatter diffraction (EBSD), the relationship between deformation textures, developed upon different stress-strain states and characterized by the basic crystallographic orientations of recrystallized grains, has been studied in a FCC metal. The regularities of recrystallization twins development were considered. Crystallo-geometric relations between the deformation and the recrystallization orientations were explained with the mobility of the special grain boundary close to the coinciding site lattice boundary Σ25b. Mechanisms of nucleation and growth of the annealing twins were proposed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

173-179

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F.J. Humphreys, M. Hatherly, Recrystallization and related annealing phenomena, 2nd ed, Elsevier Ltd, The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK, (2004).

DOI: 10.1177/004728759603500115

Google Scholar

[2] D.N. Lee, Strain energy release maximization model for recrystallization textures, Met. Mater. Int. 5 (1999) 401–417.

DOI: 10.1007/bf03026153

Google Scholar

[3] S.I. Wright, J.F. Bingert, L. Zernow, Microtextural zones in a copper shaped charge particle, Mater. Sci. Eng. A. 207 (1996) 224–227.

DOI: 10.1016/0921-5093(95)10089-x

Google Scholar

[4] T. Baudin, A.L. Etter, R. Penelle, Annealing twin formation and recrystallization study of cold drawn copper wires from EBSD measurements, Mater. Charact. 58 (2007) 947–952.

DOI: 10.1016/j.matchar.2006.09.009

Google Scholar

[5] J.H. Cho, K.H. Oh, A.D. Rollett, J.S. Cho, Y.J. Park, J.T. Moon, Investigation of recrystallization and grain growth of copper and gold bonding wires, Metall. Mater. Trans. A. 37 (2006) 3085–3097.

DOI: 10.1007/s11661-006-0189-5

Google Scholar

[6] P. Haasen, How are new orientations generated during primary recrystallization?, Metall. Trans. A. 24 (1993) 1001–1015.

DOI: 10.1007/bf02657231

Google Scholar

[7] Y.V. Khlebnikova, D.P. Rodionov, I.V. Gervas'eva, L.Y. Egorova, T.R. Suaridze, Perfect cubic texture, structure, and mechanical properties of nonmagnetic copper-based alloy ribbon substrates, Tech. Phys. 60 (2015) 389–399.

DOI: 10.1134/s1063784215030111

Google Scholar

[8] G.M. Rusakov, A.G. Illarionov, Y.N. Loginov, M.L. Lobanov, A.A. Redikul'tsev, Interrelation of Crystallographic Orientations of Grains in Aluminum Alloy AMg6 Under Hot Deformation and Recrystallization, Met. Sci. Heat Treat. 56 (2015) 650–655.

DOI: 10.1007/s11041-015-9816-3

Google Scholar

[9] G.M. Rusakov, M.L. Lobanov, A.A. Redikul'Tsev, A.S. Belyaevskikh, Special misorientations and textural heredity in the commercial alloy Fe-3% Si, Phys. Met. Metallogr. 115 (2014) 775–785.

DOI: 10.1134/s0031918x14080134

Google Scholar

[10] G.M. Rusakov, A.A. Redikultsev, M.L. Lobanov, Formation mechanism for the orientation relationship between 110〈001〉 and 111〈112〉 grains during Twinning in Fe-3 Pct Si Alloy, Metall. Mater. Trans. Phys. Metall. Mater. Sci. 39 (2008) 2278–2280.

DOI: 10.1007/s11661-008-9575-5

Google Scholar

[11] C.A. Schuh, M. Kumar, W.E. King, Universal features of grain boundary networks in FCC materials, J. Mater. Sci. 40 (2005) 847–852.

DOI: 10.1007/s10853-005-6500-9

Google Scholar

[12] M. Matsushita, T. Kuji, H. Kuroda, S. Aoyama, H. Ohfuji, EBSD Analysis of the Submicron Width Fibber Shaped Grain Copper Fabricated by Drawing, Mater. Sci. Appl. 2 (2011) 911–916.

DOI: 10.4236/msa.2011.27121

Google Scholar

[13] H. Park, D.N. Lee, The evolution of annealing textures in 90 Pct drawn copper wire, Metall. Mater. Trans. Phys. Metall. Mater. Sci. 34 A (2003) 531–541.

DOI: 10.1007/s11661-003-0089-x

Google Scholar

[14] H. Park, D.N. Lee, Effects of shear strain and drawing pass on the texture development in copper wire, Mater. Sci. Forum. 408–412 (2002) 637–642.

DOI: 10.4028/www.scientific.net/msf.408-412.637

Google Scholar

[15] R. Penelle, T. Baudin, Primary recrystallization of invar, Fe-36%Ni alloy: Origin and development of the cubic texture, Adv. Eng. Mater. 12 (2010) 1047–1052.

DOI: 10.1002/adem.201000077

Google Scholar

[16] V. Randle, Twinning-related grain boundary engineering, Acta Mater. 52 (2004) 4067–4081.

DOI: 10.1016/j.actamat.2004.05.031

Google Scholar

[17] D.P. Field, L.T. Bradford, M.M. Nowell, T.M. Lillo, The role of annealing twins during recrystallization of Cu, Acta Mater. 55 (2007) 4233–4241.

DOI: 10.1016/j.actamat.2007.03.021

Google Scholar

[18] N. Souaï, N. Bozzolo, L. Nazé, Y. Chastel, R. Logé, About the possibility of grain boundary engineering via hot-working in a nickel-base superalloy, Scr. Mater. 62 (2010) 851–854.

DOI: 10.1016/j.scriptamat.2010.02.019

Google Scholar

[19] J.G. Brons, G.B. Thompson, A comparison of grain boundary evolution during grain growth in fcc metals, Acta Mater. 61 (2013) 3936–3944.

DOI: 10.1016/j.actamat.2013.02.057

Google Scholar