[1]
R.L. Kennedy, Allvac 718Plus, superalloy for the next forty years, Superalloys 718, 625, 706 and Derivatives. (2005) 1–14.
DOI: 10.7449/2005/superalloys_2005_1_14
Google Scholar
[2]
R.M. Kearsey, J. Tsang, S. Oppenheimer and E. McDevitt, Microstructural Effects on the Mechanical Properties of ATI 718Plus® Alloy, JOM. 64 (2) (2012) 241-251.
DOI: 10.1007/s11837-012-0242-3
Google Scholar
[3]
E.A. Ott, J. Groh and H. Sizek, Metals affordability initiative: application of Allvac alloy 718Plus for aircraft engine static structural components, Superalloys 718, 625, 706 and Derivatives. (2005) 35–45.
DOI: 10.7449/2005/superalloys_2005_35_45
Google Scholar
[4]
S. Azadian, L.Y. Wei and R. Warren, Delta phase precipitation in Inconel 718, Mater. Charact. 53 (1) (2004) 7–16.
DOI: 10.1016/j.matchar.2004.07.004
Google Scholar
[5]
L. Whitmore, M.R. Ahmadi, L. Guetaz, H. Leitner, E. Povoden-Karadeniz, M. Stockinger and E. Kozeschnik, The microstructure of heat-treated nickel-based superalloy 718Plus, Mater. Sci. Eng. A. 610 (2014) 39-45.
DOI: 10.1016/j.msea.2014.05.022
Google Scholar
[6]
A. Agnoli, M. Bernacki, R. Logé, J.M. Franchet, J. Laigo and N. Bozzolo, Selective growth of low stored energy grains during δ sub-solvus annealing in the Inconel 718 nickel-based superalloy, Metall. Mater. Trans. A. 46 (9) (2015) 4405–4421.
DOI: 10.1007/s11661-015-3035-9
Google Scholar
[7]
E.J. Pickering, H. Mathur, A. Bhowmik, O.M.D. M. Messé, J.S. Barnard, M.C. Hardy, R. Krakow, K. Loehnert, H.J. Stone and C.M.F. Rae, Grain-boundary precipitation in Allvac 718Plus, Acta Mater. 60 (6–7) (2012) 2757–2769.
DOI: 10.1016/j.actamat.2012.01.042
Google Scholar
[8]
J. Andersson, S. Hatami and G. Sjöberg, Notch sensitivity and intergranular crack growth in the Allvac 718Plus superalloy, 18th ISABE Conf., (2007).
Google Scholar
[9]
W.D. Cao and R.L. Kennedy, Recommendations for Heat Treating Allvac 718Plus Alloy Parts, (2006).
Google Scholar
[10]
A. Chamanfar, L. Sarrat, M. Jahazi, M. Asadi, A. Weck and A.K. Koul, Microstructural characteristics of forged and heat treated Inconel-718 disks, Mater. Des. 52 (2013) 791–800.
DOI: 10.1016/j.matdes.2013.06.004
Google Scholar
[11]
W.C. Liu, Z.L. Chen, and M. Yao, Effect of cold rolling on the precipitation behavior of δ phase in Inconel 718, Metall. Mater. Trans. A. 30 (1) (1999) 31–40.
DOI: 10.1007/s11661-999-0193-7
Google Scholar
[12]
Y. Mei, Y. Liu, C. Liu, C. Li, L. Yu, Q. Guo and H. Li, Effects of cold rolling on the precipitation kinetics and the morphology evolution of intermediate phases in Inconel 718 alloy, J. Alloys Compd. 649 (2015) 949–960.
DOI: 10.1016/j.jallcom.2015.07.149
Google Scholar
[13]
E. McDevitt, Effect of temperature and strain during forging on subsequent delta phase precipitation during solution annealing in ATI 718Plus alloy, 7th International Symposium on Superalloy 718 and Derivatives (2010) 307–319.
DOI: 10.7449/2010/superalloys_2010_307_319
Google Scholar
[14]
O. Covarrubias, Microstructural and mechanical effects of thermo-mechanical processing on ATI 718Plus contoured rings, Adv. Mater. Res. 278 (2011) 271–276.
DOI: 10.4028/www.scientific.net/amr.278.271
Google Scholar
[15]
A. Casanova, N. Martín-Piris, M. Hardy and C. Rae, Evolution of secondary phases in alloy ATI 718Plus during processing, 2nd European Symposium on Superalloys and their Applications (2014) 1-6.
DOI: 10.1051/matecconf/20141409003
Google Scholar
[16]
A. Casanova, M. Hardy and C.M.F. Rae, Morphology and kinetics of grain boundary precipitation in alloy ATI 718Plus, 8th International Symposium on Superalloy 718 and Derivatives (2014) 573–586.
DOI: 10.1002/9781119016854.ch45
Google Scholar