Hot Working Effects on the Damping Behavior of Shape Memory Alloys

Article Preview

Abstract:

Cu-Zn-Al shape memory alloys (SMAs) were analysed in two different processing states: (i) hot-forged and (ii) hot-rolled. Both hot-forged and hot-rolled specimens were cut into lamellar configuration, before being homogenized (1073 K/ 18 ks/ water) and tempered (373, 473, 573, 673 K/ 300 s/ water). From each of the five differently treated lamellas, in hot-forged and hot-rolled states, rectangular specimens were cut for dynamic mechanical analysis (DMA). The remaining segments were sectioned into metallographic specimens. The metallographic specimens were embedded into could mounting resin, ground, polished and etched for scanning electron microscopy (SEM) -observations. DMA results revealed the influence of plastic deformation procedure and heat treatment temperature on the reversible martensitic transformation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

180-187

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. B Morgan, Mater. Sci. Eng. A 378(1-2), 16 (2004).

Google Scholar

[2] J. Matovic, K. Reichenberger, Proced. Eng. 5, 1372 (2010).

Google Scholar

[3] J. Mohd Jani, M. Leary, A. Subic, M. A. Gibson, Mater. Design 56, 1078 (2014).

Google Scholar

[4] V. Torra, A. Isalgue, F. Martorell, P. Terriault, F. C. Lovey, Eng. Struct. 29, 1889 (2007).

Google Scholar

[5] A. Cladera, B. Weber, C. Leinenbach, C. Czaderski, M. Shahverdi, M. Motavalli, Constr. Build. Mater. 63 281 (2014).

DOI: 10.1016/j.conbuildmat.2014.04.032

Google Scholar

[6] L. G. Bujoreanu; M.L. Craus, S. Stanciu; V. Dia, Mater. Sci. Tech. -Lond. 16, 612 (2000).

Google Scholar

[7] H. Yin, Y. Yan, Y. Huo, Q. Sun, Matt. Lett. 109, 287 (2013).

Google Scholar

[8] J. Van Humbeeck, J. Alloy. Compd. 355, 58 (2003).

Google Scholar

[9] S. Chakravorty, C. M. Wayman, Acta Metall. 25, 989 (1977).

Google Scholar

[10] L. G. Bujoreanu, M. L. Craus, I. Rusu, S. Stanciu, D. Sutiman, J. Alloy. Compd., 278 190 (1998).

Google Scholar

[11] L. G. Bujoreanu, Mat. Sci. Eng. A 481–482 395 (2008).

Google Scholar

[12] U. S. Mallik, V. Sampath, Mat. Sci. Eng. A 478 48 (2008).

Google Scholar

[13] S. Kustov, S. Golyandin, K. Sapozhnikov, W. H. Robinson, Mat. Sci. Eng. A 237 2, 191 (1997).

Google Scholar

[14] S. H. Chang, Mater. Chem. Phys., 125, 358 (2011).

Google Scholar

[15] Q. S. Liu, X. Ma, C. X. Lin, Y. D. Wu, Mat. Sci. Eng. A 438–440, 563 (2006).

Google Scholar

[16] M. O. Moroni, R. Saldivia, M. Sarrazin, A. Sepúlveda, Mat. Sci. Eng. A 335, 313 (2002).

Google Scholar

[17] Q. Wang, F. Han, J. Wu, G. Hao, Mater. Lett. 61, 2598 (2007).

Google Scholar

[18] J. M. Guilemany, J. Fernandez, J. Mat. Sci. 31, 4981 (1996).

Google Scholar

[19] F. J. Gil, J. M. Guilemany, J. Mat. Sci. Lett, 10 1016 (1991).

Google Scholar

[20] G. Vitel, M. G. Suru, A. L. Paraschiv, N. M. Lohan, B. Pricop, M. Baciu, L. G. Bujoreanu, Mater. Manuf. Proc., 28(1), pp.79-84, (2013).

DOI: 10.1080/10426914.2012.700157

Google Scholar

[21] J. Van Humbeeck, J. Stoiber, L. Delaey, R. Gotthardt, Z. Metallkd. 86, 176 (1995).

Google Scholar

[22] F. J. Gil, J. M. Guilemany, Mat. Res. Bul, 27 117 (1992).

Google Scholar

[23] N. M. Lohan, L. -G. Bujoreanu, C. Baciu, Micro Nano Lett., 7-6, 540 (2012).

Google Scholar

[24] H. W. Kim, J. Mater. Process. Technol. 146, 326 (2004).

Google Scholar

[25] G. Vitel, A. L. Paraschiv, M. G. Suru, N. Cimpoesu, L. -G. Bujoreanu, Optoelectron. Adv. M. 6(1-2), 339-342, (2012).

Google Scholar

[26] Z. Li, S. Gong, M. P. Wang, J. Alloy. Compd. 452 307 (2008).

Google Scholar

[27] M. H. Wu, Engineering Aspects of Shape Memory Alloys, T. Duerig, K. N. Melton, D. Stockel, C. M. Wayman, (eds. ), Oxford, Butterworth-Heinemann, 69 (1990).

Google Scholar