Bio-Inspired In Situ Fabrication of 11-Mercaptoundecanoic Acid Coating on Stainless Steel 304 for Corrosion Protection

Article Preview

Abstract:

Bio-inspired in situ fabrication of 11-Mercaptoundecanoic Acid was proposed to prepare self-assembled coating of alkanethiolates on SS304 alloy. In this method, the SS304 was coated with a reactive biopolymer – Polydopamine (PDA) by dispersing them in a dopamine solution and mildly stirring at room temperature with subsequent covalent attachment of 11-Mercaptoundecanoic Acid molecules through the interaction between thiol groups and Polydopamine. The formation and surface structure of the coating were characterized by water contact angle measurement, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The electronic properties of such obtained functional film were studied by potentiodynamic polarization curve and EIS in 3.5% NaCl solution. Corrosion protection efficiency near 99 % was evaluated, and the excellent corrosion resistance property could be ascribed to the compact film structure and good seawater stability for modified SS304 surface, especially in limiting the infiltration of Cl-.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

375-383

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Ulman, Formation and Structure of Self-Assembled Monolayers. Chem. Rev. 96 (1996) 1533-1554.

DOI: 10.1021/cr9502357

Google Scholar

[2] M. Maciej, P. Krysin´ski, Covalently Immobilized 1, 4-Phenylenediamine on 11-Mercaptoundecanoic Acid-Coated Gold: Effect of Surface-Confined Monomers on the Chemical in Situ Deposition of Polyaniline and Its Derivatives. Langmuir. 17 (2001).

DOI: 10.1021/la001661c

Google Scholar

[3] W. Hua, C. Shengfu, L. Linyan, J. Shaoyi, Improved Method for the Preparation of Carboxylic Acid and Amine Terminated Self-Assembled Monolayers of Alkanethiolates, Langmuir. 21 (2005) 2633-2636.

DOI: 10.1021/la046810w

Google Scholar

[4] T. Ignat, M. Miu, I. Kleps, A. Bragaru, M. Simion, M. Danila, Electrochemical characterization of BSA/11-mercaptoundecanoic acid on Au electrode Mater. Sci. Eng., B. (2009).

DOI: 10.1016/j.mseb.2009.11.021

Google Scholar

[5] Y. Song, Z. Li, Z. Liu, G. Wei, L. Wang, L. Sun, Immobilization of DNA on 11-mercaptoundecanoic acid-modified gold (111) surface for atomic force microscopy imaging. Microsc. Res. Tech, 68 (2005) 59-64.

DOI: 10.1002/jemt.20235

Google Scholar

[6] G. Robert, E. O. Chapman, S. Takayama, R. E. Holmlin, Y. Lin, M. G. Whitesides, Surveying for Surface that Resist the Adsorption of Proteins. J Am. Chem. Soc, 122 (2000) 8303-8304.

DOI: 10.1021/ja000774f

Google Scholar

[7] C.L. Huang, C. W. Chang, J. D. Liao, Y. T. Wu, C. C. Lin. M.S. Ju, Cells anchored upon a thin organic film with different nano-mechanical properties Appl. Surf. Sci, 255 (2008) 301-303.

DOI: 10.1016/j.apsusc.2008.06.104

Google Scholar

[8] Y. Arima, H. Wata, Effects of surface functional groups on protein adsorption and subsequent cell adhesion using self-assembled monolayers. J. Mater. Chem, 17 (2007) 4079 - 4087.

DOI: 10.1039/b708099a

Google Scholar

[9] H. Wang, D. Castner, B. Ratner, S. Jiang, Probing the Orientation of Surface-Immobilized Immunoglobulin G by Time-of-Flight Secondary Ion Mass Spectrometry. Langmuir, 20 (2004) 1877-1887.

DOI: 10.1021/la035376f

Google Scholar

[10] M. Maciej, P. Krysin´ski, Covalently Immobilized 1, 4-Phenylenediamine on 11-Mercaptoundecanoic Acid-Coated Gold: Effect of Surface-Confined Monomers on the Chemical in Situ Deposition of Polyaniline and Its Derivatives. Langmuir, 26 (2006).

DOI: 10.1021/la001661c

Google Scholar

[11] N. Sakuragi, S. Yamamoto, Y. Koide. A Self-Assembled Monolayers Assisted Solid-State Conversion of Boehmite Particles to Aluminum Oxide Film. J. Am. Chem. Soc. 129 (2007) 10048-10049.

DOI: 10.1021/ja068981o

Google Scholar

[12] Y. J. Wang, P. Pratixa, K. L. Hobbs, M.B. Johnson, W. David, Nanostructured Biosensors Built by Layer-by-Layer Electrostatic Assembly of Enzyme-Coated Single-Walled Carbon Nanotubes and Redox Polymers. Langmuir, 22 (2006) 9776-9783.

DOI: 10.1021/la060857v

Google Scholar

[13] S.B. Wang, C. Li, F.E. Chen, G.Q. Shi, Nanotechnology, 18 (2007) 1-6.

Google Scholar

[14] X.W. Fan, L.J. Lin, L.D. Jeffrey, B. Phillip, Biomimetic Anchor for Surface-Initiated Polymerization from Metal Substrates. J. Am. Chem. Soc, 127 (2005) 15843-15847.

DOI: 10.1021/ja0532638

Google Scholar

[15] L. D. Jeffrey, B. H. Hu, B. P. Lee, P. B. Messersmith, Mussel Adhesive Protein Mimetic Polymers for the Preparation of Nonfouling Surfaces. J. Am. Chem. Soc. 125 (2003) 4253-4258.

DOI: 10.1021/ja0284963

Google Scholar

[16] L.D. Jeffrey, L.J. Lin, S. Tosatti, J. Voros, M. Textor, P.B. Messersmith, Protein Resistance of Titanium Oxide Surfaces Modified by Biologically Inspired mPEG-DOPA, Langmuir, 21 (2005) 640-646.

DOI: 10.1021/la048626g

Google Scholar

[17] S. G. Chen, Y. Chen, Y. H. Lei, Y. S. Yin, Novel strategy in enhancing stability and corrosion resistance for hydrophobic functional films on copper surfaces. Electrochem. Commun, 11 (2009) 1675-1679.

DOI: 10.1016/j.elecom.2009.06.021

Google Scholar

[18] C.D. Wagner, J. F. Moulder, J. E. Davis, W. M. Riggs, Handbook of X-ray photoelectron spectroscopy. (1992).

Google Scholar

[19] C. B. Gorman, Y. F. He, R. L. Carroll, The Influence of Headgroup on the Structure of Self-Assembled Monolayers as Viewed by Scanning Tunneling Microscopy. Langmuir, 17 (2001) 5324-5328.

DOI: 10.1021/la0013998

Google Scholar

[20] F. Bernsmann, A. P., C. Ringwald, J. Hemmerle, J. Raya, B. Bechinger, Characterization of Dopamine−Melanin Growth on Silicon Oxide, J. Phys. Chem. C., 2009, 113, 8234-8242.

DOI: 10.1021/jp901188h

Google Scholar

[21] C. B. Gorman, Y. F. He, R. L. Carroll, The Influence of Headgroup on the Structure of Self-Assembled Monolayers As Viewed by Scanning Tunneling Microscopy, Langmuir, 2001, 17, 5324-5328.

DOI: 10.1021/la0013998

Google Scholar

[22] S.M. Mendoza, I. Arfaoui, S. Zanarini, F. Paolucci, P. Rudolf, Langmuir., 2007 (23) 582-588.

Google Scholar

[23] H. Lee, S.M. Dellatore, E. M. Miller, P. B. Messersmith, Mussel-inspired surface chemistry for multifunctional coating, Science., 2007, 318, 426-430.

DOI: 10.1126/science.1147241

Google Scholar

[24] S. Gidanian, P. J. Farmer, Redox behavior of melanins: direct electrochemistry of dihydroxyindole-melanin and its Cu and Zn adducts. J. Inorg. Biochem, 89 (2002) 54-60.

DOI: 10.1016/s0162-0134(01)00405-6

Google Scholar

[25] M. Behpour, S. M. Ghoreishia, M. Salavati-Niasaria, B. Ebrahimia, Mater. Chem. Phys, 107 (2008) 153-157.

Google Scholar

[26] K.F. Khaled, Guanidine derivative as a new corrosion inhibitor for copper in 3% NaCl solution. Mater. Chem. Phys, 112 (2008) 104-111.

DOI: 10.1016/j.matchemphys.2008.05.052

Google Scholar

[27] M. Qian, A. M. Soutar, X. H. Tan, X. T. Zeng, S.L. Wijesinghe, Two-part epoxy-siloxane hybrid corrosion protection coatings for carbon steel, Thin Solid Films, 517 (2009) 5237-5242.

DOI: 10.1016/j.tsf.2009.03.114

Google Scholar

[28] T. Liu, S. G. Chen, S. Cheng, J. T. Tian, X. T, Chang, Y. S. Yin, Corrosion behavior of super-hydrophobic surface on copper in seawater, Electrochemical Acta, 52 (2007) 8003-8007.

DOI: 10.1016/j.electacta.2007.06.072

Google Scholar