Electrodeposition and the Optimization of Molybdenum Layer on Nb-Ti-Si Based Ultra-High Alloys from Aqueous Solution

Article Preview

Abstract:

Depositing a molybdenum layer through electrodeposition is a possible and economical way to prepare Mo layer. It could be a new preparation of MoSi2 coating on Nb-Ti-Si based alloys combined with halide pack cementation. In this paper, the effects of pre-coated Re layer on the substrate, pH of the electrolyte, water to acetate ratio and the applied current density on the deposition were investigated and optimized to obtain low oxygen content, adherent molybdenum coating on Nb-Ti-Si based alloys. The surface morphology and cross section were characterized by SEM. The thickness of the deposit is about 6 μm and nodules and cracks were observed on the surface. EDS and EPMA analysis suggested the presence of Mo and its oxides in the deposit; XPS results confirmed the presence of Mo, Mo2O3 and MoO3 in the as-deposited layer. The crystal structure of as-prepared coating was amorphous by the XRD investigation, and the metallic molybdenum was the main existence form of the molybdenum element in the deposit.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

396-405

Citation:

Online since:

February 2018

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B.P. Bewlay, M.R. Jackson, J.C. Zhao, P.R. Subramanian, A review of very-hightemperature Nb-silicide-based composites, Metall. Mater. Trans. A. 34 (2003) (2043).

DOI: 10.1007/s11661-003-0269-8

Google Scholar

[2] X.P. Guo, L.M. Gao, P. Guan, K. Kusabiraki, H.Z. Fu, Microstructure and mechanical properties of an advanced niobium based ultrahigh temperature alloy, Mater. Sci. Forum. 539-543 (2007) 3690.

DOI: 10.4028/www.scientific.net/msf.539-543.3690

Google Scholar

[3] B. Voglewede, V.R. Rangel, S.K. Varma, The effects of uncommon silicides on the oxidation behavior of alloys from the Nb-Cr-Si system, Corros. Sci. 61 (2012) 123-133.

DOI: 10.1016/j.corsci.2012.04.029

Google Scholar

[4] W Wang, B.Y. Zhang, C.G. Zhou. Formation and oxidation resistance of Hf and Al modified silicide coating on Nb-Si based alloy, Corros. Sci. 86 (2014) 304-309.

DOI: 10.1016/j.corsci.2014.06.011

Google Scholar

[5] D.Z. Yao, R. Cai, C.G. Zhou, J.B. Sha, H.R. Jiang. Experimental study and modeling of high temperature oxidation of Nb-base in situ composites, Corros. Sci. 51 (2009) 364-370.

DOI: 10.1016/j.corsci.2008.11.004

Google Scholar

[6] R. Mitra. Mechanical behavior and oxidation resistance of structural silicides, Int Mater Rev. 51 (2006) 13-64.

Google Scholar

[7] M.Z. Alam, B. Venkataraman, B. Sarma, D.K. Das. MoSi2 coating on Mo substrate for short-term oxidation protection in air, J. Alloy. Compd. 487 (2009) 335-340.

DOI: 10.1016/j.jallcom.2009.07.141

Google Scholar

[8] Y.Q. Liu, G. Shao, P. Tsakiropoulos. On the Oxidation Behaviour of MoSi2, Intermetallics. 9 (2001) 125-136.

DOI: 10.1016/s0966-9795(00)00114-x

Google Scholar

[9] S. Majumdar, A. Kumar, D. Schliephake, H. -J. Christ, X. Jiang, M. Heilmaier. Mate. Sci. Eng., A. 573 (2013) 257-263.

Google Scholar

[10] H.S. Huang, K.S. Hwang, Deoxidation of molybdenum during vacuum sintering, Metall. Mater. Tran. A. 33 (2002) 657-664.

DOI: 10.1007/s11661-002-0127-0

Google Scholar

[11] J. Y. Wu, W. Wang, C. G Zhou. Microstructure and oxidation resistance of Mo-Si-B coating on Nb based in situ composites, Corros. Sci. 87 (2014) 421-426.

DOI: 10.1016/j.corsci.2014.07.006

Google Scholar

[12] A. Vaidya, T. Streibl, L. Li, S. Sampath, O. Kovarik, R. Greenlaw, An integrated study of thermal spray process-structure-property correlations: A case study for plasma sprayed molybdenum coating, Mater. Sci. Eng., A. 403 (2005) 191-204.

DOI: 10.1016/j.msea.2005.04.056

Google Scholar

[13] E. Go´mez, E. Pellicer, E. Valle´s. Intermediate molybdenum oxides involved in binary and ternary induced electrodeposition, J. Electroanal. Chem. 580 (2005) 238-244.

DOI: 10.1016/j.jelechem.2005.03.031

Google Scholar

[14] L.S. Sanches, C.B. Marino, L.H. Mascaro. Investigation of the codeposition of Fe and Mo from sulphate-citrate acid solutions, J. Alloys and Compd. 439 (2007) 342-345.

DOI: 10.1016/j.jallcom.2006.08.231

Google Scholar

[15] E. Go´mez, E. Pellicer, E. Valle´s. Developing plating baths for the production of cobalt–molybdenum films, Surf. Coat. Technol. 197 (2005) 238-246.

DOI: 10.1016/j.surfcoat.2004.09.017

Google Scholar

[16] Paulo N. S. Casciano, Ramon L. Benevides, Pedro de Lima-Neto, Adriana N. Int. J. Electrochem. Sci., 9 (2014) 4413-4428.

Google Scholar

[17] M.J. Ksycki, L.F. Yntema. The Electrodeposition of Molybdenum from Aqueous Solutions, Soc. 96 (1949) 48-56.

DOI: 10.1149/1.2776770

Google Scholar

[18] T.J. Morley, L. Penner, P. Schaffer, T.J. Ruth, F. Bénard, E. Asselin. Electrochem. Commun. 15 (2012) 78-80.

Google Scholar

[19] R. Syed, S.K. Ghosh, P.U. Sastry, G. Sharma, R.C. Hubli, J.K. Chakravartty. Surf. Coat. Technol. 261 (2015) 15-20.

Google Scholar

[20] F. Nemla, D. Cherrad. Appl. Surf. Sci. 375 (2016)1-8.

Google Scholar

[21] E. Sugiarti, Y. Wang, N. Hashimoto, S. Ohnuki, T. Narita. Phase Characterization of Re-Based Diffusion Barrier Layer on Nb Substrate, Mater. Trans. 52 (2011) 319-323.

DOI: 10.2320/matertrans.mb201022

Google Scholar

[22] Y. Harada, Y. Funato, M. Morinaga, A. Ito, Y. Sugita. Solid Solubilities of Ternary Elements and Their Effects on Microstructure of MoSi2, J. Jpn. I. Met. 58 (1994) 1239-1247.

Google Scholar

[23] K. Saito, S. Hayashi, T. Narita, I. Iwanaga, R. Tanaka. Development of an oxidation resistant coating on Nb-based ultra-high temperature alloy, Mater. Sci. Forum. 522-523 (2006) 309-316.

DOI: 10.4028/www.scientific.net/msf.522-523.309

Google Scholar

[24] H.I. Karunadasa, C.J. Chang, J.R. Long, A molecular molybdenum-oxo catalyst for generating hydrogen from water, Nature. 464 (2010) 1329-1333.

DOI: 10.1038/nature08969

Google Scholar