Understanding the Inhibition Mechanism of a Supramolecular Complex as the Corrosion Inhibitor for Mild Steel in the Condensate Water

Article Preview

Abstract:

This work attempted to elucidate the corrosion inhibition mechanism of a supramolecular complex formed between β-cyclodextrin (β-CD) and octadecylamine (ODA) for mild steel in the condensate water. Molecular mechanics simulation was applied to determine the energy favored configuration of the complex and the possible orientation of ODA inside the β-CD cavity. Based on the results of gravimetric measurements, thermodynamics parameters for the adsorption process were calculated through Arrhenius and transition state equations. Scanning electron microscopy and X-ray photo electron spectroscopy were used for surface characterization. Density functional theory calculations (Mulliken charges and molecular electrostatic potential plot) were performed to clarify the adsorption mechanism of β-CD/ODA complex on the steel surface. It was found that four possible configurations of β-CD/ODA complex might be concurrent in the supramolecular system with the stable state in the aqueous solution. ODA molecules could break away from the β-CD cavity and chemically adsorbed on the metal surface, which obeyed the Langmuir adsorption isotherm. The inherent molecular electrostatic properties resulted in the tilted adsorption of ODA.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

424-438

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Yildiz, An electrochemical and theoretical evaluation of 4, 6-diamino-2-pyrimidinethiol as a corrosion inhibitor for mild steel in HCl solutions, Corros. Sci. 90 (2015) 544-553.

DOI: 10.1016/j.corsci.2014.10.047

Google Scholar

[2] G. Sığırcık, D. Yildirim, T. Tüken, Synthesis and inhibitory effect of N, N'-bis(1-phenylethanol) ethylenediamine against steel corrosion in HCl Media, Corros. Sci. 120 (2017) 184-193.

DOI: 10.1016/j.corsci.2017.03.003

Google Scholar

[3] D. Jiang, H. Xu, H.I. Khan, Z. Zhu, B. Deng, N. Zhang, Transport of corrosion products in the steam-water cycle of supercritical power plant, Appl. Therm. Eng. 113 (2017) 1164-1169.

DOI: 10.1016/j.applthermaleng.2016.11.119

Google Scholar

[4] O. Pourali, H.G. Kadijani, F.M. Khangheshlaghi, Chemical conditioning and monitoring to control and minimize chemistry-related damages in Heller dry cooled combined cycle power plants, Anti-Corros. Methods Mater. 64 (2017) 188-208.

DOI: 10.1108/acmm-02-2016-1648

Google Scholar

[5] D.Q. Zhang, Y.M. Tang, S.J. Qi, D.W. Dong, H. Cang, G. Lu, The inhibition performance of long-chain alkyl-substituted benzimidazole derivatives for corrosion of mild steel in HCl, Corros. Sci. 102 (2016) 517-522.

DOI: 10.1016/j.corsci.2015.10.002

Google Scholar

[6] K.G. Zhang, B. Xu, W.Z. Yang, X.S. Yin, Y. Liu, Y.Z. Chen, Halogen-substituted imidazoline derivatives as corrosion inhibitors for mild steel in hydrochloric acid solution, Corros. Sci. 90 (2015) 284-295.

DOI: 10.1016/j.corsci.2014.10.032

Google Scholar

[7] L.Y. Xu, Y.F. Cheng, Experimental and numerical studies of effectiveness of cathodic protection at corrosion defects on pipelines, Corros. Sci. 78 (2014) 162-171.

DOI: 10.1016/j.corsci.2013.09.011

Google Scholar

[8] B.D. Mert, M.E. Mert, G. Kardaş, B. Yazıcı, The experimental and quantum chemical investigation for two isomeric compounds as aminopyrazine and 2-amino-pyrimidine against mild steel corrosion, Anti-Corros. Methods Mater. 63(2016) 369-376.

DOI: 10.1108/acmm-12-2014-1480

Google Scholar

[9] L.L. Liao, S. Mo, H.Q. Luo, N.B. Li, Longan seed and peel as environmentally friendly corrosion inhibitor for mild steel in acid solution: Experimental and theoretical studies, J. Colloid Interf. Sci. 499 (2017) 110-119.

DOI: 10.1016/j.jcis.2017.03.091

Google Scholar

[10] F. Mao, C. Dong, D.D. Macdonald, Effect of octadecylamine on the corrosion behavior of Type 316SS in acetate buffer, Corros. Sci. 98 (2015) 192-200.

DOI: 10.1016/j.corsci.2015.05.022

Google Scholar

[11] A. Rohani-Rad, J. Mofidi, Z. Modaress-Tehrani, Anticorrosive behaviour of octadecylamine for protection of boiler surfaces, Corros. Eng. Sci. Tech. 38 (2003) 79-80.

DOI: 10.1179/147842203225001496

Google Scholar

[12] S.A. Cao, J.Y. Hu, J.L. Xie, Q.Q. Liang, L. Yin, Research on the film-forming characteristics of octadecylamine at high temperatures, Anti-Corros. Methods Mater. 60 (2013) 14-19.

DOI: 10.1108/00035591311287401

Google Scholar

[13] X. Du, W. Gu, Y. Lu, Chinese Patent 104694933-A. (2013).

Google Scholar

[14] Y. Xing, Chinese Patent 105968981-A. (2016).

Google Scholar

[15] J.M. Lehn, Supramolecular chemistry, Science (New York, N.Y. ), 260 (1993) 1762-1763.

Google Scholar

[16] X. Zhu, G. Wu, D. Chen, Molecular dynamics simulation of cyclodextrin aggregation and extraction of Anthracene from non-aqueous liquid phase, J. Hazard. Mater. 320 (2016) 169-175.

DOI: 10.1016/j.jhazmat.2016.08.015

Google Scholar

[17] A. Ghanem, F.G. Adly, Y. Sokerik, N.Y. Antwi, M.A. Shenashen, S.A. El-Safty, Trimethyl-beta-cyclodextrin-encapsulated monolithic capillary columns: Preparation, characterization and chiral nano-LC application, Talanta 169 (2017) 239-248.

DOI: 10.1016/j.talanta.2016.06.027

Google Scholar

[18] M. Cugovcan, J. Jablan, J. Lovric, D. Cincic, N. Galic, M. Jug, Biopharmaceutical characterization of praziquantel cocrystals and cyclodextrin complexes prepared by grinding, J. Pharmaceut. Biomed. 137 (2017) 42-53.

DOI: 10.1016/j.jpba.2017.01.025

Google Scholar

[19] L.Q. Peng, L.H. Ye, J. Cao, Y.X. Chang, Q. Li, M. An, Z. Tan, J.J. Xu, Cyclodextrin-based miniaturized solid phase extraction for biopesticides analysis in water and vegetable juices samples analyzed by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry, Food Chem. 226 (2017).

DOI: 10.1016/j.foodchem.2017.01.006

Google Scholar

[20] B.M. Fan, G. Wei, Z. Zhang, N. Qiao, Characterization of a supramolecular complex based on octadecylamine and β-cyclodextrin and its corrosion inhibition properties in condensate water, Corros. Sci. 83 (2014) 75–85.

DOI: 10.1016/j.corsci.2014.01.043

Google Scholar

[21] GB/T 6907-2005, Analysis of water used in boil and cooling system — The sampling method of water, (2005).

Google Scholar

[22] DL/T 502. 1-2006, Analytical methods of steam and water in power plants. Part 1: General rule, (2006).

Google Scholar

[23] T. Higuchi, K.A. Connors, Phase-solubility techniques, Adv. Anal. Chem. Instr., 4 (1965) 117-212.

Google Scholar

[24] Y.M. Evtushenko, V.M. Ivanov, B.E. Zaitsev, Photometric determination of octadecylamine with Methyl Orange, J. Anal. Chem. 57 (2002) 8-11.

Google Scholar

[25] A.A. Al Omari, M.M. Al Omari, A.A. Badwan, K.A. Al-Sou'od, Effect of cyclodextrins on the solubility and stability of candesartan cilexetil in solution and solid state, J. Pharmaceut. Biom. 54 (2011) 503-509.

DOI: 10.1016/j.jpba.2010.09.027

Google Scholar

[26] M. Monteil, M. Lecouvey, D. Landy, S. Ruellan, I. Mallard, Cyclodextrins: A promising drug delivery vehicle for bisphosphonate, Carbohyd. Polym. 156 (2017) 285-293.

DOI: 10.1016/j.carbpol.2016.09.030

Google Scholar

[27] K.A. Connors, The stability of cyclodextrin complexes in solution, Chem. Rev. 97 (1997) 1325-1358.

Google Scholar

[28] M.B. Zughul, A.A. Badwan, SL2 Type Phase Solubility Diagrams, Complex Formation and Chemical Speciation of Soluble Species, J. Incl. Phenomena. 31 (1998) 243-264.

Google Scholar

[29] M.M. Al Omari, M.B. Zughul, J.E.D. Davies, A.A. Badwan, A study of haloperidol inclusion complexes with beta-cyclodextrin using phase solubility, NMR spectroscopy and molecular modeling techniques, J. Solution Chem. 38 (2009) 669-683.

DOI: 10.1007/s10953-009-9404-5

Google Scholar

[30] M.W. van der Kamp, A.J. Mulholland, Combined quantum mechanics/molecular mechanics (QM/MM) methods in computational enzymology, Biochemistry 52 (2013) 2708-2728.

DOI: 10.1021/bi400215w

Google Scholar

[31] K.B. Lipkowitz, Applications of computational chemistry to the study of cyclodextrins, Chem. Rev. 98 (1998) 1829-1874.

Google Scholar

[32] W. Saenger, J. Jacob, K. Gessler, T. Steiner, D. Hoffmann, H. Sanbe, K. Koizumi, S.M. Smith, T. Takaha, Structures of the common cyclodextrins and their larger analoguesbeyond the doughnut, Chem. Rev. 98 (1998) 1787-1802.

DOI: 10.1021/cr9700181

Google Scholar

[33] S.M. Shaban, A.A. Abd-Elaal, S.M. Tawfik, Gravimetric and electrochemical evaluation of three nonionic dithiol surfactants as corrosion inhibitors for mild steel in 1 M HCl solution, J. Mol. Liq. 216 (2016) 392-400.

DOI: 10.1016/j.molliq.2016.01.048

Google Scholar

[34] S.K. Saha, A. Dutta, P. Ghosh, D. Sukul, P. Banerjee, Adsorption and corrosion inhibition effect of Schiff base molecules on the mild steel surface in 1 M HCl medium: a combined experimental and theoretical approach, Phys. Chem. Chem. Phys. 17 (2015).

DOI: 10.1039/c4cp05614k

Google Scholar

[35] A.S. Yaro, A.A. Khadom, S.M. Lahmod, Kinetics of the corrosion inhibition reaction of steel alloys in acidic media by potassium iodide, React. Kinet. Mech. Cat. 109 (2013) 417-432.

DOI: 10.1007/s11144-013-0568-z

Google Scholar

[36] M.A. Amin, M.A. Ahmed, H.A. Arida, T. Arslan, M. Saracoglu, F. Kandemirli, Monitoring corrosion and corrosion control of iron in HCl by non-ionic surfactants of the TRITON-X series – Part II. Temperature effect, activation energies and thermodynamics of adsorption, Corros. Sci. 53 (2011).

DOI: 10.1016/j.corsci.2010.09.019

Google Scholar

[37] Y.S. Wang, Y. Zuo, The adsorption and inhibition behavior of two organic inhibitors for carbon steel in simulated concrete pore solution, Corros. Sci. 118 (2017) 24-30.

DOI: 10.1016/j.corsci.2017.01.008

Google Scholar

[38] S. Xiong, J. Sun, Y. Xu, X. Yan, Adsorption behavior of tautomeric forms of 2-aminino-5-mercato-1, 3, 4-thiadizole as corrosion inhibitor on copper surface, Anti-Corros. Methods Mater. 63 (2016) 452-460.

DOI: 10.1108/acmm-01-2015-1483

Google Scholar

[39] H.W. Tian, W.H. Li, B.R. Hou, D.P. Wang, Insights into corrosion inhibition behavior of multi-active compounds for X65 pipeline steel in acidic oilfield formation water, Corros. Sci. 117 (2017) 43-58.

DOI: 10.1016/j.corsci.2017.01.010

Google Scholar

[40] M. Mobin, M. Rizvi, Polysaccharide from Plantago as a green corrosion inhibitor for carbon steel in 1 M HCl solution, Carbohyd. Polym. 160 (2017) 172-183.

DOI: 10.1016/j.carbpol.2016.12.056

Google Scholar

[41] E. Naderi, M. Ehteshamzadeh, A.H. Jafari, M.G. Hosseini, Effect of carbon steel microstructure and molecular structure of two new Schiff base compounds on inhibition performance in 1 M HCl solution by DC, SEM and XRD studies, Mater. Chem. Phys. 120 (2010).

DOI: 10.1016/j.matchemphys.2009.10.036

Google Scholar

[42] P. Mourya, P. Singh, R.B. Rastogi, M.M. Singh, Inhibition of mild steel corrosion by 1, 4, 6-trimethy1-2-oxo-1, 2-dihydropyridine-3-carbonitrile and synergistic effect of halide ion in 0. 5 M H2SO4, Appl. Surf. Sci. 380 (2016) 141-150.

DOI: 10.1016/j.apsusc.2016.01.263

Google Scholar

[43] M. Finšgar, S. Fassbender, S. Hirth, I. Milošev, Electrochemical and XPS study of polyethyleneimines of different molecular sizes as corrosion inhibitors for AISI 430 stainless steel in near-neutral chloride media, Mater. Chem. Phys. 116 (2009).

DOI: 10.1016/j.matchemphys.2009.03.010

Google Scholar

[44] P. Mourya, P. Singh, A.K. Tewari, R.B. Rastogi, M.M. Singh, Relationship between structure and inhibition behaviour of quinolinium salts for mild steel corrosion: Experimental and theoretical approach, Corros. Sci. 95 (2015) 71-87.

DOI: 10.1016/j.corsci.2015.02.034

Google Scholar

[45] X. Gao, C. Zhao, H. Lu, F. Gao, H. Ma, Influence of phytic acid on the corrosion behavior of iron under acidic and neutral conditions, Electrochim. Acta 150 (2014) 188-196.

DOI: 10.1016/j.electacta.2014.09.160

Google Scholar

[46] M.N. Tahir, T.T. Nielsen, K.L. Larsen, β-cyclodextrin functionalized on glass micro-particles: A green catalyst for selective oxidation of toluene to benzaldehyde, Appl. Surf. Sci. 389 (2016) 1108-1112.

DOI: 10.1016/j.apsusc.2016.07.176

Google Scholar

[47] C. Xu, J. Wang, L. Wan, J. Lin, X. Wang, Microwave-assisted covalent modification of graphene nanosheets with hydroxypropyl-[small beta]-cyclodextrin and its electrochemical detection of phenolic organic pollutants, J. Mater. Chem. 21 (2011).

DOI: 10.1039/c1jm10478k

Google Scholar