Influence of Sc Addition on the Corrosion Behavior of Medium Strength Al-Zn-Mg Alloy

Article Preview

Abstract:

In this paper, the effect of Sc addition (0.06 wt%) on the corrosion behavior of medium strength Al-Zn-Mg alloy is investigated by mass loss measurements, electrochemical experiment, intergranular corrosion and exfoliation corrosion tests. The results indicate the addition of Sc reduces the relative weight loss and enhances pitting performance as a result of grain refinement. The improved intergranular corrosion and exfoliation corrosion resistance caused by minor Sc addition are mainly attributed to the delay in both the initiation and advance stages of local corrosion.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

439-444

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Royset, N. Ryum, Scandium in aluminium alloys, Int. Mater Rev. 50(1) (2005) 19-44.

Google Scholar

[2] B. Forbord, W. Lefebvre, F. Danoix, H. Hallem, K. Marthinsen, Three dimensional atom probe investigation on the formation of Al-3(Sc, Zr)-dispersoids in aluminium alloys, Scripta Mater. 51(4) (2004) 333-337.

DOI: 10.1016/j.scriptamat.2004.03.033

Google Scholar

[3] Y. Shi, Q. Pan, M. Li, X. Huang, B. Li, Effect of Sc and Zr additions on corrosion behaviour of Al-Zn-Mg-Cu alloys, J Alloy Compd. 612 (2014) 42-50.

DOI: 10.1016/j.jallcom.2014.05.128

Google Scholar

[4] Y. Deng, Z. Yin, K. Zhao, J. Duan, J. Hu, Z. He, Effects of Sc and Zr microalloying additions and aging time at 120 degrees C on the corrosion behaviour of an Al-Zn-Mg alloy, Corros Sci. 65 (2012) 288-298.

DOI: 10.1016/j.corsci.2012.08.024

Google Scholar

[5] M.B. Kannan, V.S. Raja, Influence of heat treatment and scandium addition on the electrochemical polarization behavior of Al-Zn-Mg-Cu-Zr alloy, Metall Mater Trans A. 38A(11) (2007) 2843-2852.

DOI: 10.1007/s11661-007-9303-6

Google Scholar

[6] J. Wloka, S. Virtanen, Influence of scandium on the pitting behaviour of Al-Zn-Mg-Cu alloys, Acta Materialia. 55(19) (2007) 6666-6672.

DOI: 10.1016/j.actamat.2007.08.021

Google Scholar

[7] D.K. Ryabov, N.I. Kolobnev, S.V. Samohvalov, Effect of scandium addition on mechanical properties and corrosion resistance of medium strength Al-Zn-Mg(-Cu) alloy, in: K. Marthinsen, B. Holmedal, Y. Li (Eds. ) Aluminium Alloys 2014-ICAA14. 2014, pp.241-246.

DOI: 10.4028/www.scientific.net/msf.794-796.241

Google Scholar

[8] Z.M. Li, H.C. Jiang, Y. L. Wang, D. Zhang, D.S. Yan, L.J. Rong, Effect of minor Sc addition on microstructure and stress corrosion cracking behavior of medium strength Al-Zn-Mg alloy, submitted to J. Mater. Sci. Technol. (2017).

DOI: 10.1016/j.jmst.2017.11.042

Google Scholar

[9] ASTM G31-12a. ASTM International. Standard Guide for Laboratory Immersion Corrosion Testing of Metals.

Google Scholar

[10] T. Ramgopal, P.I. Gouma, G.S. Frankel, Role of grain-boundary precipitates and solute-depleted zone on the intergranular corrosion of aluminum alloy 7150, Corrosion. 58(8) (2002) 687-697.

DOI: 10.5006/1.3287699

Google Scholar

[11] GB 7998-2005. National standard of China. Test method for inter-granular corrosion of aluminum alloys.

Google Scholar

[12] GB/T 22639-2008. National standard of China. Test method of exfoliation corrosion for wrought aluminum and aluminum alloys.

Google Scholar

[13] Z. Ahmad, A. Ul-Hamid, A.A. B. J, The corrosion behavior of scandium alloyed Al 5052 in neutral sodium chloride solution, Corros Sci. 43(7) (2001) 1227-1243.

DOI: 10.1016/s0010-938x(00)00147-5

Google Scholar

[14] R.K. Gupta, A. Deschamps, M.K. Cavanaugh, S.P. Lynch, N. Birbilisa, Relating the Early Evolution of Microstructure with the Electrochemical Response and Mechanical Performance of a Cu-Rich and Cu-Lean 7xxx Aluminum Alloy, J Electrochem Soc. 159(11) (2012).

DOI: 10.1149/2.062211jes

Google Scholar

[15] M.J. Robinson, N.C. Jackson, The influence of grain structure and intergranular corrosion rate on exfoliation and stress corrosion crackingof high strength Al-Cu-Mg alloys, Corros Sci. 41 (1999) 1013-1028.

DOI: 10.1016/s0010-938x(98)00171-1

Google Scholar

[16] K.D. Ralston, D. Fabijanic, N. Birbilis, Effect of grain size on corrosion of high purity aluminum, Electrochem Acta. 56 (2011) 1729-1736.

DOI: 10.1016/j.electacta.2010.09.023

Google Scholar