Preparation and Characterization of Mechanical Properties of Hydroxyapatite/Carbon Nanotube Laminated Ceramic Composites Consolidated by Spark Plasma Sintering

Article Preview

Abstract:

Laminated xCNTs-HAP/yCNTs-HAP ceramic composites were consolidated using a spark plasma sintering(SPS) technique at SPS temperature 900°C, pressure 40MPa and holding time 5min. The effect of carbon nanotubes content and thickness of each layer on mechanical properties of the composites was investigated. It was demonstrated that the stratified structure improvedthe flexural strength obviously. All the flexural strength of laminar compositewashigher than that of single CNTs-HAP ceramic, up to 112.4MPa. Since the matrix of each layer wereHAP, the difference liesonly in the content of carbon nanotubes, thus avoiding the common problem of the interlayer bonding in other layered composites with different materials. In order to characterize the toughness of the layered composite, the stress-strain curve was compared showingthat the existence of the stratified structure improved the stress-strain obviously.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

466-472

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Rapacz-Kmita, A. Lósarczyk, Z. Paszkiewicz, Mechanical properties of HAp–ZrO2 composites, J EUR CERAM SOC. 26 (2006) 1481-1488.

DOI: 10.1016/j.jeurceramsoc.2005.01.059

Google Scholar

[2] B. Lee, C. Lee, A.K. Gain, H. Song, Microstructures and material properties of fibrous HAp/Al2O3–ZrO2 composites fabricated by multi-pass extrusion process, J EUR CERAM SOC. 27 (2007) 157-163.

DOI: 10.1016/j.jeurceramsoc.2006.02.038

Google Scholar

[3] Z. Ran, C. Xianying, Summarizes the investigation of HAP potter biomaterial, Orthopaedic Biomechanics Materials and Clinical study. 2 (2005) 43-47.

Google Scholar

[4] Z. Minggang, New Technics Preparation of HAP Bone Cement Material with Sol-Gel Method, Metallic Functional Materials. 9 (2002) 33-35.

Google Scholar

[5] Y. Chun, G. Yingkui, Z. Milin, Thermal decomposition and mechanical properties of hydroxyapatite ceramic, T NONFERR METAL SOC. (2010) 254-258.

Google Scholar

[6] H. Yang, L. Zhang, K. Xu, The microstructure and specific properties of La/HAP composite powder and its coating, APPL SURF SCI. 254 (2007) 425-430.

DOI: 10.1016/j.apsusc.2007.05.009

Google Scholar

[7] D. Veljovi, I. Zalite, E. Palcevskis, I. Smiciklas, R. Petrovi, D. Jana Kovi, Microwave sintering of fine grained HAP and HAP/TCP bioceramics, CERAM INT. 36 (2010) 595-603.

DOI: 10.1016/j.ceramint.2009.09.038

Google Scholar

[8] S. Markovi, M.J. Luki, S.O.D. Kapin, B. Stojanovi, D. Uskokovi, Designing, fabrication and characterization of nanostructured functionally graded HAp/BCP ceramics, CERAM INT. 41 (2015) 2654-2667.

DOI: 10.1016/j.ceramint.2014.10.079

Google Scholar

[9] S. Iijima, Helical microtubules of graphitic carbon, NATURE. 354 (1991) 56-58.

DOI: 10.1038/354056a0

Google Scholar

[10] P. Ma, N.A. Siddiqui, G. Marom, J. Kim, Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review, Composites Part A: Applied Science and Manufacturing. 41 (2010) 1345-1367.

DOI: 10.1016/j.compositesa.2010.07.003

Google Scholar

[11] D. Troya, S.L. Mielke, G.C. Schatz, Carbon nanotube fracture – differences between quantum mechanical mechanisms and those of empirical potentials, CHEM PHYS LETT. 382 (2003) 133-141.

DOI: 10.1016/j.cplett.2003.10.068

Google Scholar

[12] S.L. Mielke, D. Troya, S. Zhang, J. Li, S. Xiao, R. Car, R.S. Ruoff, G.C. Schatz, T. Belytschko, The role of vacancy defects and holes in the fracture of carbon nanotubes, CHEM PHYS LETT. 390 (2004) 413-420.

DOI: 10.1016/j.cplett.2004.04.054

Google Scholar

[13] K.M. Liew, Z.X. Lei, L.W. Zhang, Mechanical analysis of functionally graded carbon nanotube reinforced composites: A review, COMPOS STRUCT. 120 (2015) 90-97.

DOI: 10.1016/j.compstruct.2014.09.041

Google Scholar

[14] C. Wang, Y. Huang, Q. Zan, H. Guo, S. Cai, Biomimetic structure design — a possible approach to change the brittleness of ceramics in nature, Materials Science and Engineering: C 11 (2000) 9-12.

DOI: 10.1016/s0928-4931(00)00133-8

Google Scholar

[15] L. Xiang, L. Cheng, Y. Hou, F. Wang, L. Li, L. Zhang, Fabrication and mechanical properties of laminated HfC–SiC/BN ceramics, J EUR CERAM SOC. 34 (2014) 3635-3640.

DOI: 10.1016/j.jeurceramsoc.2014.04.021

Google Scholar

[16] X. Yang, Z. Wang, P. Song, S. Wang, Y. Wang, K. Mao, Laminated structure optimization and drawing performance of Al2O3–TiC/Al2O3–TiC–CaF2 self-lubricating laminated ceramic conical die, CERAM INT. 41 (2015) 12480-12489.

DOI: 10.1016/j.ceramint.2015.06.016

Google Scholar