[1]
A. Rapacz-Kmita, A. Lósarczyk, Z. Paszkiewicz, Mechanical properties of HAp–ZrO2 composites, J EUR CERAM SOC. 26 (2006) 1481-1488.
DOI: 10.1016/j.jeurceramsoc.2005.01.059
Google Scholar
[2]
B. Lee, C. Lee, A.K. Gain, H. Song, Microstructures and material properties of fibrous HAp/Al2O3–ZrO2 composites fabricated by multi-pass extrusion process, J EUR CERAM SOC. 27 (2007) 157-163.
DOI: 10.1016/j.jeurceramsoc.2006.02.038
Google Scholar
[3]
Z. Ran, C. Xianying, Summarizes the investigation of HAP potter biomaterial, Orthopaedic Biomechanics Materials and Clinical study. 2 (2005) 43-47.
Google Scholar
[4]
Z. Minggang, New Technics Preparation of HAP Bone Cement Material with Sol-Gel Method, Metallic Functional Materials. 9 (2002) 33-35.
Google Scholar
[5]
Y. Chun, G. Yingkui, Z. Milin, Thermal decomposition and mechanical properties of hydroxyapatite ceramic, T NONFERR METAL SOC. (2010) 254-258.
Google Scholar
[6]
H. Yang, L. Zhang, K. Xu, The microstructure and specific properties of La/HAP composite powder and its coating, APPL SURF SCI. 254 (2007) 425-430.
DOI: 10.1016/j.apsusc.2007.05.009
Google Scholar
[7]
D. Veljovi, I. Zalite, E. Palcevskis, I. Smiciklas, R. Petrovi, D. Jana Kovi, Microwave sintering of fine grained HAP and HAP/TCP bioceramics, CERAM INT. 36 (2010) 595-603.
DOI: 10.1016/j.ceramint.2009.09.038
Google Scholar
[8]
S. Markovi, M.J. Luki, S.O.D. Kapin, B. Stojanovi, D. Uskokovi, Designing, fabrication and characterization of nanostructured functionally graded HAp/BCP ceramics, CERAM INT. 41 (2015) 2654-2667.
DOI: 10.1016/j.ceramint.2014.10.079
Google Scholar
[9]
S. Iijima, Helical microtubules of graphitic carbon, NATURE. 354 (1991) 56-58.
DOI: 10.1038/354056a0
Google Scholar
[10]
P. Ma, N.A. Siddiqui, G. Marom, J. Kim, Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review, Composites Part A: Applied Science and Manufacturing. 41 (2010) 1345-1367.
DOI: 10.1016/j.compositesa.2010.07.003
Google Scholar
[11]
D. Troya, S.L. Mielke, G.C. Schatz, Carbon nanotube fracture – differences between quantum mechanical mechanisms and those of empirical potentials, CHEM PHYS LETT. 382 (2003) 133-141.
DOI: 10.1016/j.cplett.2003.10.068
Google Scholar
[12]
S.L. Mielke, D. Troya, S. Zhang, J. Li, S. Xiao, R. Car, R.S. Ruoff, G.C. Schatz, T. Belytschko, The role of vacancy defects and holes in the fracture of carbon nanotubes, CHEM PHYS LETT. 390 (2004) 413-420.
DOI: 10.1016/j.cplett.2004.04.054
Google Scholar
[13]
K.M. Liew, Z.X. Lei, L.W. Zhang, Mechanical analysis of functionally graded carbon nanotube reinforced composites: A review, COMPOS STRUCT. 120 (2015) 90-97.
DOI: 10.1016/j.compstruct.2014.09.041
Google Scholar
[14]
C. Wang, Y. Huang, Q. Zan, H. Guo, S. Cai, Biomimetic structure design — a possible approach to change the brittleness of ceramics in nature, Materials Science and Engineering: C 11 (2000) 9-12.
DOI: 10.1016/s0928-4931(00)00133-8
Google Scholar
[15]
L. Xiang, L. Cheng, Y. Hou, F. Wang, L. Li, L. Zhang, Fabrication and mechanical properties of laminated HfC–SiC/BN ceramics, J EUR CERAM SOC. 34 (2014) 3635-3640.
DOI: 10.1016/j.jeurceramsoc.2014.04.021
Google Scholar
[16]
X. Yang, Z. Wang, P. Song, S. Wang, Y. Wang, K. Mao, Laminated structure optimization and drawing performance of Al2O3–TiC/Al2O3–TiC–CaF2 self-lubricating laminated ceramic conical die, CERAM INT. 41 (2015) 12480-12489.
DOI: 10.1016/j.ceramint.2015.06.016
Google Scholar