Raman/Infrared Spectra and Microwave Dielectric Properties of 0.22CaTiO3-0.78(Li0.5Sm0.5)TiO3 Ceramics with MgO Additive

Article Preview

Abstract:

0.22CaTiO3-0.78(Li0.5Sm0.5)TiO3 + x wt% MgO (0.25 ≤ x ≤ 2.0) ceramics with pure perovskite structure were prepared by a conventional two-step solid-state reaction process. The effect of different content of MgO additive on the microwave dielectric properties of the 0.22CaTiO3-0.78(Li0.5Sm0.5)TiO3 ceramics was investigated in detail. The results of microwave dielectric properties showed that the permittivity (εr) and temperature coefficient of resonant frequency (τf) decreased gradually, while quality factor (Q×f) values increased when the x value increased. Raman spectra and infrared reflectivity spectra were used to study the relationship between vibrational modes and microwave dielectric properties. The harmonic oscillator model was used to fit infrared reflectivity spectra, and the obtained complex dielectric response was extrapolated down into the microwave region. It was found that the complex dielectric spectra were in good agreement with the measured microwave permittivity and dielectric loss. The 0.22CaTiO3-0.78(Li0.5Sm0.5)TiO3 + 0.50 wt% MgO ceramic sintered at 1240°C for 4 h exhibited good microwave dielectric properties with εr = 102.6, Q×f = 5084 GHz (at 3.8 GHz), and τf = -16.3 ppm/°C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

473-479

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Lowndes, F. Azough, R. Cernik, R. Freer, Structures and microwave dielectric properties of Ca(1−x)Nd2x/3TiO3 ceramics, J. Eur. Ceram. Soc. 32 (2012) 3791-3799.

DOI: 10.1016/j.jeurceramsoc.2012.05.024

Google Scholar

[2] M. Mirsaneh, I.M. Reaney, Y. Han, I. Sterianou, O.P. Leisten, Low sintering temperature high permittivity glass ceramic composites for dielectric loaded microwave antennas, Adv. Appl. Ceram. 110 (2013) 387-393.

DOI: 10.1179/1743676111y.0000000031

Google Scholar

[3] W. -B. Li, D. Zhou, H. -H. Xi, L. -X. Pang, X. Yao, N. Alford, Structure, Infrared Reflectivity and Microwave Dielectric Properties of (Na0. 5La0. 5)MoO4-(Na0. 5Bi0. 5)MoO4 Ceramics, J. Am. Ceram. Soc. 99 (2016) 2083-(2088).

DOI: 10.1111/jace.14175

Google Scholar

[4] H. Kagata, J. Kato, Dielectric Properties of Ca-Based Complex Perovskite at Microwave Frequencies, Jpn. J. Appl. Phys. 33 (1994) 5463-5465.

DOI: 10.1143/jjap.33.5463

Google Scholar

[5] H. Takahashi, Y. Baba, K. Ezaki, Y. Okamoto, K. Shibata, K. Kuroki, S. Nakano, Dielectric Characteristics of (A1+ 1/2A3+ 1/2)TiO3 Ceramics at Microwave Frequencies, Jpn. J. Appl. Phys. 30 (1991) 2339-2342.

DOI: 10.1143/jjap.30.2339

Google Scholar

[6] E.S. Kim, K.H. Yoon, Microwave dielectric properties of (1−x)CaTiO3–xLi1/2Sm1/2TiO3 ceramics, J. Eur. Ceram. Soc. 23 (2003) 2397-2401.

DOI: 10.1016/s0955-2219(03)00192-4

Google Scholar

[7] Y.M. Li, T.T. Song, F. Hu, R.H. Liao, B. Zhang, Microwave Dielectric Properties of Ca1-x(Li1/2Sm1/2)xTiO3 Ceramics, Adv. Mater. Res. 105-106 (2010) 238-241.

Google Scholar

[8] F. -f. Gu, G. -h. Chen, C. -l. Yuan, C. -r. Zhou, T. Yang, Y. Yang, Low temperature sintering and microwave dielectric properties of 0. 2Ca0. 8Sr0. 2TiO3–0. 8Li0. 5Sm0. 5TiO3 ceramics with BaCu(B2O5) additive and TiO2 dopant, Mater. Res. Bull. 61 (2015).

DOI: 10.1016/j.materresbull.2014.10.025

Google Scholar

[9] W. Chang, L. Sengupta, MgO-mixed Ba0. 6Sr0. 4TiO3 bulk ceramics and thin films for tunable microwave applications, J. Appl. Phys. 92 (2002) 3941-3946.

DOI: 10.1063/1.1505669

Google Scholar

[10] J.S. Park, Y.H. Han, Effects of MgO coating on microstructure and dielectric properties of BaTiO3, J. Eur. Ceram. Soc. 27 (2007) 1077-1082.

Google Scholar

[11] S.Y. Wu, Y. Li, X.M. Chen, Raman spectra of Ba6−3xSm8+2xTi18O54 solid solution, J. Phys. Chem. Solids. 64 (2003) 2365-2368.

DOI: 10.1016/s0022-3697(03)00273-7

Google Scholar

[12] T. Hirata, K. Ishioka, M. Kitajima, Vibrational Spectroscopy and X-Ray Diffraction of Perovskite Compounds Sr1−xMxTiO3 (M = Ca, Mg; 0 ≤ x ≤ 1), J. Solid State Chem. 124 (1996) 353–359.

DOI: 10.1006/jssc.1996.0249

Google Scholar

[13] U. Balachandran, N.G. Eror, Laser-induced Raman scattering in calcium titanate, Solid State Commun. 44 (1982) 815-818.

DOI: 10.1016/0038-1098(82)90280-0

Google Scholar

[14] C.H. Perry, B.N. Khanna, G. Rupprecht, Infrared Studies of Perovskite Titanates, Phys. Rev. 135 (1964) A408-A412.

DOI: 10.1103/physrev.135.a408

Google Scholar

[15] K.W. Sup, Y.K. Hyun, K.E. Soo, Microwave Dielectric Properties and Far‐Infrared Reflectivity Characteristics of the CaTiO3–Li(1/2)−3xSm(1/2)+xTiO3 Ceramics, J. Am. Ceram. Soc. 83 (2000) 2327-2329.

DOI: 10.1111/j.1151-2916.2000.tb01557.x

Google Scholar

[16] W. -B. Li, D. Zhou, D. Guo, L. -X. Pang, G. -H. Chen, Z. -M. Qi, Q. -P. Wang, H. -C. Liu, Structure, Raman spectra, far-infrared spectra and microwave dielectric properties of temperature independent CeVO4-TiO2 composite ceramics, J. Alloy. Compd. 694 (2017).

DOI: 10.1016/j.jallcom.2016.09.327

Google Scholar