Establishment of Processing Maps for 25vol.% B4CP/AA6061 Composite and its Application in Hot Pack-Rolling Process

Article Preview

Abstract:

The hot workability and hot pack-rolling process of B4CP/AA6061 composite were studied. The results showed that the addition of B4C particles could effectively promote the dynamic recrystallization (DRX) process of the composite. DRX and DRX grains growth were dominant deformation mechanism during hot deformation of B4CP/AA6061composite. Typical instability defects included micro voids and particle aggregation. The optimum processing parameters for good workability were obtained in the temperature range of 450°C-500°C and strain rate range of 0.01s-1-0.1s-1. According to the flow stress curves and processing maps, a temperature of 500°C and a rolling velocity of 40 mm/s were chosen for pack-rolling experiments. The pack-rolled composite sheets in the RD and TD showed more homogeneous DRX grains than as-HIPed microstructures, which might indicate that hot pack-rolling could lead to more homogeneous microstructures without any edge cracking and surface cracking.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

498-508

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Xu Z G, Jiang L T, Zhang Q, The design of a novel neutron shielding B4C/Al composite containing Gd,J. Materials & Design. 111 (2016) 375-381.

DOI: 10.1016/j.matdes.2016.07.140

Google Scholar

[2] Wang K, Li X, Li Q, Hot deformation behavior and microstructural evolution of particulate-reinforced AA6061/B4C composite during compression at elevated temperature,J. Materials Science and Engineering: A. 696 (2017) 248-256.

DOI: 10.1016/j.msea.2017.03.013

Google Scholar

[3] Gangolu S, Rao A G, Sabirov I, Development of Constitutive Relationship and Processing Map for Al-6.65Si-0.44Mg Alloy and Its Composite with B4C Particulates,J. Materials Science & Engineering A. 655 (2016) 256-264.

DOI: 10.1016/j.msea.2015.12.093

Google Scholar

[4] Soliman M, El-Sabbagh A, Taha M, Hot Deformation Behavior of 6061 and 7108 Al-SiCp Composites,J. Journal of Materials Engineering & Performance. 22 (2013) 1331-1340.

DOI: 10.1007/s11665-012-0425-7

Google Scholar

[5] Zhou L, Huang Z Y, Wang C Z, Constitutive flow behaviour and finite element simulation of hot rolling of SiCp/2009Al composite,J. Mechanics of Materials. 93 (2016) 32-42.

DOI: 10.1016/j.mechmat.2015.10.010

Google Scholar

[6] Yan Y W, Geng L, Li A B,Experimental and numerical studies of the effect of particle size on the deformation behavior of the metal matrix composites,J. Materials Science & Engineering A. 448 (2007) 315-325.

DOI: 10.1016/j.msea.2006.10.158

Google Scholar

[7] Patel A, Das S, Prasad B K, Compressive deformation behaviour of Al alloy (2014)–10wt.% SiCp composite: Effects of strain rates and temperatures,J. Materials Science and Engineering: A. 530 (2011) 225-232.

DOI: 10.1016/j.msea.2011.09.078

Google Scholar

[8] Quan G Z, Kang B S, Ku T W, Identification for the optimal working parameters of Al–Zn–Mg–Cu alloy with the processing maps based on DMM,J. International Journal of Advanced Manufacturing Technology. 56 (2011) 1069-1078.

DOI: 10.1007/s00170-011-3241-6

Google Scholar

[9] Zhang F, Sun J L, Shen J, Flow behavior and processing maps of 2099 alloy,J. Materials Science & Engineering A. 613 (2014) 141-147.

DOI: 10.1016/j.msea.2014.06.085

Google Scholar

[10] S. V. S. Narayana Murty, B. Nageswara Rao, B. P. Kashyap, On the hot working characteristics of 2124 Al–SiCp metal matrix composites,J. Advanced Composite Materials.11 ( 2002) 105-120.

DOI: 10.1163/156855102760410315

Google Scholar

[11] Ganesan G, Raghukandan K, Karthikeyan R, et al. Development of processing maps for 6061 Al/15% SiCp composite material,J. Materials Science & Engineering A.369 (2004) 230-235.

DOI: 10.1016/j.msea.2003.11.019

Google Scholar

[12] Cavaliere P, Cerri E, Leo P, Hot deformation and processing maps of a particulate reinforced 2618/Al2O3/20p metal matrix composite,J. Composites Science & Technology. 64 (2004)1287-1291.

DOI: 10.1016/j.compscitech.2003.10.007

Google Scholar

[13] Qin J, Zhang Z, Chen X G, Hot deformation and processing maps of Al-15%B4C composites containing Sc and Zr,J. Journal of Materials Engineering & Performance. 26 (2017) 1673-1684.

DOI: 10.1007/s11665-017-2622-x

Google Scholar

[14] Wang Z, Song M, Sun C, Effect of extrusion and particle volume fraction on the mechanical properties of SiC reinforced Al–Cu alloy composites,J. Materials Science & Engineering A. 527 (2010) 6537-6542.

DOI: 10.1016/j.msea.2010.07.017

Google Scholar

[15] Hanamantraygouda. M B, Shivakumar B P, Effect of forging condition on mechanical properties of Al/SiC metal matrix composites,J. International Journal of Engineering Research & Technology. 4 (2015) 567-571.

DOI: 10.17577/ijertv4is050635

Google Scholar

[16] El-Sabbagh A, Soliman M, Taha M, Hot rolling behaviour of stir-cast Al 6061 and Al 6082 alloys – SiC fine particulates reinforced composites,J. Journal of Materials Processing Technology. 212 (2012) 497-508.

DOI: 10.1016/j.jmatprotec.2011.10.016

Google Scholar

[17] Wu T, Jin L, Wu W X, Improved ductility of Mg-Zn-Ce alloy by hot pack-rolling,J. Materials Science & Engineering A. 584 (2013) 97-102.

DOI: 10.1016/j.msea.2013.07.011

Google Scholar

[18] Zhou H, Kong F, Wu K, Hot pack rolling nearly lamellar Ti-44Al-8Nb-(W, B, Y) alloy with different rolling reductions: Lamellar colonies evolution and tensile properties,J. Materials & Design. 121 (2017) 202-212.

DOI: 10.1016/j.matdes.2017.02.053

Google Scholar

[19] Niu H Z, Kong F T, Xiao S L, Effect of pack rolling on microstructures and tensile properties of as-forged Ti-44Al-6V-3Nb-0.3Y alloy,J. Intermetallics. 21 (2012) 97-104.

DOI: 10.1016/j.intermet.2011.10.003

Google Scholar

[20] Rajamuthamilselvan M, Ramanathan S, Development of Processing Map for 7075 Al/20% SiCp, Composite,J. Journal of Materials Engineering and Performance. 21 (2012)191-196.

DOI: 10.1007/s11665-011-9871-x

Google Scholar

[21] Ebrahimi R, Najafizadeh A, A new method for evaluation of friction in bulk metal forming,J. Journal of Materials Processing Technology. 152 (2004) 136-143.

DOI: 10.1016/j.jmatprotec.2004.03.029

Google Scholar

[22] Prasad Y V R K, Seshacharyulu T, Processing maps for hot working of titanium alloys,J. Materials Science & Engineering A. 243 (1998) 82-88.

DOI: 10.1016/s0921-5093(97)00782-x

Google Scholar

[23] Prasad Y V R K, Recent advances in the science of mechanical processing, J. Indian Journal of Technology. 28 (1990) 434-441.

Google Scholar

[24] Li H, Wang H, Zeng M, Lang X, Liu H, Forming behavior and workability of 6061/B4C composite during hot deformation,J. Composites Science & Technology, 71 (2011) 925-930.

DOI: 10.1016/j.compscitech.2011.02.009

Google Scholar

[25] Li Y L, Wang W X, Zhou J, Chen H S, Hot deformation behaviors and processing maps of B4C/Al6061 neutron absorber composites,J. Materials Characterization. 124 (2017) 107-116.

DOI: 10.1016/j.matchar.2016.12.014

Google Scholar