The Structural Evolution of Al-6Y-2P Master Alloy and its Influence on the Refinement of Mg2Si Phase in Mg2Si/Al Composites

Article Preview

Abstract:

In this article, a novel Al–6Y–2P master alloy with YP particles was successfully synthesized. By means of the fracture surface observation, it was found that YP particles with an average size of 21.5 μm exhibit the cubic morphologies. With the addition of Al–6Y–2P master alloy, primary Mg2Si particles in Al–Mg2Si composites can be significantly refined to 21.2 μm and 20.3 μm after holding for 30 min and 120 min respectively. Meanwhile, the morphologies of eutectic Mg2Si alter from a flake-like to fine fibrous shape. The reason for the excellent refining performance of this master alloy was discussed based on the chemical kinetics theory. During the solidification process, P atoms distribute homogeneously in the Al melt and precipitate in the form of AlP, providing heterogeneous nucleation sites for primary Mg2Si.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

490-497

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y.L. Liu, S.B. Kang, H.W. Kim, The complex microstructures in an as-cast Al–Mg–Si alloy, Mater. Lett. 41 (1999) 267–272.

DOI: 10.1016/s0167-577x(99)00141-x

Google Scholar

[2] C. Li, X.F. Liu, Y.Y. Wu, Refinement and modification performance of Al–P master alloy on primary Mg2Si in Al–Mg–Si alloys, J. Alloys Compd. 465 (2008) 145–150.

DOI: 10.1016/j.jallcom.2007.10.111

Google Scholar

[3] C.J. Song, Z.M. Xu, J.G. Li, Fabrication of in situ Al/Mg2Si functionally graded materials by electromagnetic separation method, Compos. Part A-Appl. S. 38 (2007) 427–433.

DOI: 10.1016/j.compositesa.2006.03.002

Google Scholar

[4] C. Li, Y.P. Wu, H. Li, Y.Y. Wu, X.F. Liu, Effect of Ni on eutectic structural evolution in hypereutectic Al–Mg2Si cast alloys, J. Alloys Compd. 477 (2009) 212–216.

DOI: 10.1016/j.msea.2010.09.056

Google Scholar

[5] L. Lu, M.O. Lai, M.L. Hoe, Formation of nanocrystalline Mg2Si and Mg2Si dispersion strengthened Mg–Al alloy by mechanical alloying, Nanostruct. Mater. 10 (1998) 551–563.

DOI: 10.1016/s0965-9773(98)00102-0

Google Scholar

[6] J. Zhang, Z. Fan, Y.Q. Wang, B.L. Zhou, Effect of cooling rate on the microstructure of hypereutectic Al–Mg2Si alloy, J. Mater. Sci. Lett. 19 (2000) 1825–1828.

Google Scholar

[7] M.F. Ourfali, I. Todd, H. Jones, Effect of solidification cooling rate on the morphology and number per unit volume of primary Mg2Si particles in a hypereutectic Al–Mg–Si alloy, Metall. Mater. Trans. A 36 (2005) 1368–1372.

DOI: 10.1007/s11661-005-0228-7

Google Scholar

[8] A. Malekan, M. Emamy, J. Rassizadehghani, A.R. Emami, The effect of solution temperature on the microstructure an tensile properties of Al-15%Mg2Si composite, Mater. Des. 32 (2011) 2701–2709.

DOI: 10.1016/j.matdes.2011.01.020

Google Scholar

[9] Y.G. Zhao, Q.D. Qin, Y.H. Liang, W. Zhou, Q.C. Jiang, In-situ Mg2Si/Al–Si–Cu composite modified by strontium, J. Mater. Sci. 40 (2005) 1831–1833.

DOI: 10.1007/s10853-005-0705-9

Google Scholar

[10] J. Zhang, Z. Fan, Y. Wang, B. Zhou, Microstructural refinement in Al–Mg2Si in situ composites, J. Mater. Sci. Lett. 18 (1999) 783–784.

Google Scholar

[11] Y.G. Zhao, Q.D. Qin, Y.Q. Zhao, Y.H. Liang, Q.C. Jiang, In situ Mg2Si/Al–Si composite modified by K2TiF6, Mater. Lett. 58 (2004) 2192–2194.

DOI: 10.1016/j.matlet.2004.01.016

Google Scholar

[12] Q.D. Qin, Y.G. Zhao, W. Zhou, P.J. Cong, Effect of phosphorus on microstructure an growth manner of primary Mg2Si crystal in Mg2Si/Al composite, Mater. Sci. Eng. A 447 (2007) 186–191.

DOI: 10.1016/j.msea.2006.10.076

Google Scholar

[13] R. Hadian, M. Emamy, N. Varahram. N. Nemati, The effect of Li on the tensile properties of cast Al–Mg2Si metal matrix composite, Mater. Sci. Eng. A 490 (2008) 250–257.

DOI: 10.1016/j.msea.2008.01.039

Google Scholar

[14] Q.C. Jiang, H.Y. Wang, Y. Wang, B.X. Ma, J.G. Wang, Modification of Mg2Si in Mg–Si alloys with yttrium, Mater. Sci. Eng. A 392 (2005) 130–135.

DOI: 10.1016/j.msea.2004.09.007

Google Scholar

[15] F.C. Robles Hernandez, J.H. Sokolowski, Comparison among chemical and electromagnetic stirring and vibration melt treatment for Al–Si hypereutectic alloys, J. Alloys Compd. 426 (2006) 205–212.

DOI: 10.1016/j.jallcom.2006.09.039

Google Scholar

[16] W.J. Kyffin, W.M. Rainforth, H. Jones, Effect of phosphorus additions on the spacing between primary silicon particles in a Bridgman solidified hypereutectic Al–Si alloy, J. Mater. Sci. 36 (2001) 2667–2672.

Google Scholar

[17] M. Zuo, X.F. Liu, Q.Q. Sun, K. Jiang, Effect of rapid solidification on the microstructure and refining performance of an Al–Si–P master alloy, J. Mater. Process. Technol. 209 (2009) 5504–5508.

DOI: 10.1016/j.jmatprotec.2009.05.005

Google Scholar

[18] M. Zuo, K. Jiang, X.F. Liu, Refinement of hypereutectic Al–Si alloy by a new Al–Zr–P master alloy, J. Alloys Compd. 503 (2010) L26–L30.

DOI: 10.1016/j.jallcom.2010.05.017

Google Scholar

[19] J.Y. Chang, G.H. Kim, I.G. Moon, C.S. Choi, Rare earth concentration in the primary Si crystal in rare earth added Al-21wt. %Si alloy, Scripta Mater. 39 (1998) 307–314.

DOI: 10.1016/s1359-6462(98)00168-7

Google Scholar

[20] M. Ravi, U.T.S. Pillai, B.C. Pai, A.D. Damodaran, E.S. Dwarakadasa, A study of the influence of mischmetal additions to Al–7Si–0. 3Mg alloy, Metall. Trans. A27 (1996) 1283–1292.

DOI: 10.1007/bf02649865

Google Scholar

[21] M. Zuo, D.G. Zhao, Z.Q. Wang, H.R. Geng, Complex modification of hypereutectic Al–Si alloy by a new Al–Y–P master alloy, Met. Mater. Int. 21 (2015) 646–651.

DOI: 10.1007/s12540-015-4535-2

Google Scholar

[22] H. Kitazawa, K. Hashi, S. Eguchi, T. Shimizu, NMR study of YP and YPO4 as 2-qubits quantum computers, Superlattice. Microst. 32 (2002) 317–322.

DOI: 10.1016/s0749-6036(03)00035-1

Google Scholar

[23] B. Amrani, F. El Haj Hassan, Theoretical study of Ⅲ–V yttrium compounds, Comput. Mater. Sci. 39 (2007) 563–568.

DOI: 10.1016/j.commatsci.2006.08.009

Google Scholar

[24] F. Soyalp, S. U ur, Structural, electronic and phonon properties' investigation of YP and YAs compounds, J. Phys. Chem. Solids. 69 (2008) 791–798.

DOI: 10.1016/j.jpcs.2007.11.013

Google Scholar

[25] M. Emamy, H.R. Jafari Nodooshan, A. Malekan, The microstructure, hardness and tensile properties of Al–15%Mg2Si in situ composite with yttrium addition, Mater. Des. 32 (2011) 4559–4566.

DOI: 10.1016/j.matdes.2011.04.026

Google Scholar

[26] C. Li, Y.Y. Wu, H. Li, X.F. Liu, Morphological evolution and growth mechanism of primary Mg2Si phase in Al–Mg2Si alloys, Acta Mater. 59 (2011) 1058–1067.

DOI: 10.1016/j.actamat.2010.10.036

Google Scholar