[1]
Y.L. Liu, S.B. Kang, H.W. Kim, The complex microstructures in an as-cast Al–Mg–Si alloy, Mater. Lett. 41 (1999) 267–272.
DOI: 10.1016/s0167-577x(99)00141-x
Google Scholar
[2]
C. Li, X.F. Liu, Y.Y. Wu, Refinement and modification performance of Al–P master alloy on primary Mg2Si in Al–Mg–Si alloys, J. Alloys Compd. 465 (2008) 145–150.
DOI: 10.1016/j.jallcom.2007.10.111
Google Scholar
[3]
C.J. Song, Z.M. Xu, J.G. Li, Fabrication of in situ Al/Mg2Si functionally graded materials by electromagnetic separation method, Compos. Part A-Appl. S. 38 (2007) 427–433.
DOI: 10.1016/j.compositesa.2006.03.002
Google Scholar
[4]
C. Li, Y.P. Wu, H. Li, Y.Y. Wu, X.F. Liu, Effect of Ni on eutectic structural evolution in hypereutectic Al–Mg2Si cast alloys, J. Alloys Compd. 477 (2009) 212–216.
DOI: 10.1016/j.msea.2010.09.056
Google Scholar
[5]
L. Lu, M.O. Lai, M.L. Hoe, Formation of nanocrystalline Mg2Si and Mg2Si dispersion strengthened Mg–Al alloy by mechanical alloying, Nanostruct. Mater. 10 (1998) 551–563.
DOI: 10.1016/s0965-9773(98)00102-0
Google Scholar
[6]
J. Zhang, Z. Fan, Y.Q. Wang, B.L. Zhou, Effect of cooling rate on the microstructure of hypereutectic Al–Mg2Si alloy, J. Mater. Sci. Lett. 19 (2000) 1825–1828.
Google Scholar
[7]
M.F. Ourfali, I. Todd, H. Jones, Effect of solidification cooling rate on the morphology and number per unit volume of primary Mg2Si particles in a hypereutectic Al–Mg–Si alloy, Metall. Mater. Trans. A 36 (2005) 1368–1372.
DOI: 10.1007/s11661-005-0228-7
Google Scholar
[8]
A. Malekan, M. Emamy, J. Rassizadehghani, A.R. Emami, The effect of solution temperature on the microstructure an tensile properties of Al-15%Mg2Si composite, Mater. Des. 32 (2011) 2701–2709.
DOI: 10.1016/j.matdes.2011.01.020
Google Scholar
[9]
Y.G. Zhao, Q.D. Qin, Y.H. Liang, W. Zhou, Q.C. Jiang, In-situ Mg2Si/Al–Si–Cu composite modified by strontium, J. Mater. Sci. 40 (2005) 1831–1833.
DOI: 10.1007/s10853-005-0705-9
Google Scholar
[10]
J. Zhang, Z. Fan, Y. Wang, B. Zhou, Microstructural refinement in Al–Mg2Si in situ composites, J. Mater. Sci. Lett. 18 (1999) 783–784.
Google Scholar
[11]
Y.G. Zhao, Q.D. Qin, Y.Q. Zhao, Y.H. Liang, Q.C. Jiang, In situ Mg2Si/Al–Si composite modified by K2TiF6, Mater. Lett. 58 (2004) 2192–2194.
DOI: 10.1016/j.matlet.2004.01.016
Google Scholar
[12]
Q.D. Qin, Y.G. Zhao, W. Zhou, P.J. Cong, Effect of phosphorus on microstructure an growth manner of primary Mg2Si crystal in Mg2Si/Al composite, Mater. Sci. Eng. A 447 (2007) 186–191.
DOI: 10.1016/j.msea.2006.10.076
Google Scholar
[13]
R. Hadian, M. Emamy, N. Varahram. N. Nemati, The effect of Li on the tensile properties of cast Al–Mg2Si metal matrix composite, Mater. Sci. Eng. A 490 (2008) 250–257.
DOI: 10.1016/j.msea.2008.01.039
Google Scholar
[14]
Q.C. Jiang, H.Y. Wang, Y. Wang, B.X. Ma, J.G. Wang, Modification of Mg2Si in Mg–Si alloys with yttrium, Mater. Sci. Eng. A 392 (2005) 130–135.
DOI: 10.1016/j.msea.2004.09.007
Google Scholar
[15]
F.C. Robles Hernandez, J.H. Sokolowski, Comparison among chemical and electromagnetic stirring and vibration melt treatment for Al–Si hypereutectic alloys, J. Alloys Compd. 426 (2006) 205–212.
DOI: 10.1016/j.jallcom.2006.09.039
Google Scholar
[16]
W.J. Kyffin, W.M. Rainforth, H. Jones, Effect of phosphorus additions on the spacing between primary silicon particles in a Bridgman solidified hypereutectic Al–Si alloy, J. Mater. Sci. 36 (2001) 2667–2672.
Google Scholar
[17]
M. Zuo, X.F. Liu, Q.Q. Sun, K. Jiang, Effect of rapid solidification on the microstructure and refining performance of an Al–Si–P master alloy, J. Mater. Process. Technol. 209 (2009) 5504–5508.
DOI: 10.1016/j.jmatprotec.2009.05.005
Google Scholar
[18]
M. Zuo, K. Jiang, X.F. Liu, Refinement of hypereutectic Al–Si alloy by a new Al–Zr–P master alloy, J. Alloys Compd. 503 (2010) L26–L30.
DOI: 10.1016/j.jallcom.2010.05.017
Google Scholar
[19]
J.Y. Chang, G.H. Kim, I.G. Moon, C.S. Choi, Rare earth concentration in the primary Si crystal in rare earth added Al-21wt. %Si alloy, Scripta Mater. 39 (1998) 307–314.
DOI: 10.1016/s1359-6462(98)00168-7
Google Scholar
[20]
M. Ravi, U.T.S. Pillai, B.C. Pai, A.D. Damodaran, E.S. Dwarakadasa, A study of the influence of mischmetal additions to Al–7Si–0. 3Mg alloy, Metall. Trans. A27 (1996) 1283–1292.
DOI: 10.1007/bf02649865
Google Scholar
[21]
M. Zuo, D.G. Zhao, Z.Q. Wang, H.R. Geng, Complex modification of hypereutectic Al–Si alloy by a new Al–Y–P master alloy, Met. Mater. Int. 21 (2015) 646–651.
DOI: 10.1007/s12540-015-4535-2
Google Scholar
[22]
H. Kitazawa, K. Hashi, S. Eguchi, T. Shimizu, NMR study of YP and YPO4 as 2-qubits quantum computers, Superlattice. Microst. 32 (2002) 317–322.
DOI: 10.1016/s0749-6036(03)00035-1
Google Scholar
[23]
B. Amrani, F. El Haj Hassan, Theoretical study of Ⅲ–V yttrium compounds, Comput. Mater. Sci. 39 (2007) 563–568.
DOI: 10.1016/j.commatsci.2006.08.009
Google Scholar
[24]
F. Soyalp, S. U ur, Structural, electronic and phonon properties' investigation of YP and YAs compounds, J. Phys. Chem. Solids. 69 (2008) 791–798.
DOI: 10.1016/j.jpcs.2007.11.013
Google Scholar
[25]
M. Emamy, H.R. Jafari Nodooshan, A. Malekan, The microstructure, hardness and tensile properties of Al–15%Mg2Si in situ composite with yttrium addition, Mater. Des. 32 (2011) 4559–4566.
DOI: 10.1016/j.matdes.2011.04.026
Google Scholar
[26]
C. Li, Y.Y. Wu, H. Li, X.F. Liu, Morphological evolution and growth mechanism of primary Mg2Si phase in Al–Mg2Si alloys, Acta Mater. 59 (2011) 1058–1067.
DOI: 10.1016/j.actamat.2010.10.036
Google Scholar