[1]
K. Uchino, Electro-Optic Ceramics and their Display Applications, Ceramics International. 21 (1995) 309–315.
DOI: 10.1016/0272-8842(95)96202-z
Google Scholar
[2]
H. Jiang, Y.K. Zou, Q. Chen, K K. Li, R. Zhang, Y. Wang, H. Ming, Z. Zheng, Optoelectronic Devices and Integration, Transparent Electro-Optic Ceramics and Devices. Proc. SPIE 5644 (2005) 380–394.
DOI: 10.1117/12.582105
Google Scholar
[3]
G.H. Haertling, C.E. Land, Hot-Pressed (Pb, La)(Zr, Ti)O3 Ferroelectric Ceramics for Electro-optic Applications, Journal of the American Ceramics Society. 54 (1971) 1–11.
DOI: 10.1111/j.1151-2916.1970.tb12105.x-i1
Google Scholar
[4]
G.H. Haertling, Hot-Pressed Ferroelectric Lead ZirconateTitanate Ceramics for Electro-Optic Applications, The American Ceramics Society Bulletin 49. (1970) 564–567.
Google Scholar
[5]
G.H. Haertling, Ferroelectric Ceramics: History and Technology, Journal of the American Ceramics Society. 82 (1999) 797-818.
DOI: 10.1111/j.1151-2916.1999.tb01840.x
Google Scholar
[6]
Can Huang, Jianmei Xu, Zhou Fang, Ding Ai, Wei Zhou, Ling Zhao, Jian Sun, Qing Wang, Effect of preparation process on properties of PLZT (9/65/35) transparent ceramics, Journal of Alloys and Compounds. 723 (2017) 602-610.
DOI: 10.1016/j.jallcom.2017.06.271
Google Scholar
[7]
Ajeet Kumar, Sivanagi Reddy Emani, V.V. Bhanu Prasad, K.C. James Raju, A.R. James, Microwave sintering of fine grained PLZT 8/60/40 ceramics prepared via high energy mechanical milling, Journal of the European Ceramic Society. 36 (2016) 2505-2511.
DOI: 10.1016/j.jeurceramsoc.2016.03.035
Google Scholar
[8]
Siripong Somwan, Narit Funsueb, Apichart Limpichaipanit, Athipong Ngamjarurojana, Influence of low external magnetic field on electric field induced strain behavior of 9/70/30, 9/65/35 and 9/60/40 PLZTceramics, Ceramics International. 42 (2016).
DOI: 10.1016/j.ceramint.2016.05.115
Google Scholar
[9]
Xiaoyang Chen, Ruimin Chen, Zeyu Chen, Jiping Chen, K. Kirk Shung, Qifa Zhou, Transparent lead lanthanum zirconate titanate (PLZT) ceramic fibers for high-frequency ultrasonic transducer applications, Ceramics International. 42 (2016) 18554-18559.
DOI: 10.1016/j.ceramint.2016.08.195
Google Scholar
[10]
Dong-liang Shi, Kwok Ho Lam, Kun Li, LPF-doped core-shell structure based CFO/PLZT 0-3 magnetoelectric composite ceramics, Journal of Alloys and Compounds. 617 (2014) 485-490.
DOI: 10.1016/j.jallcom.2014.08.016
Google Scholar
[11]
Apichart Limpichaipanit, Athipong Ngamjarurojana, Effect of Li and Bi co-doping and sintering temperature on dielectric properties of PLZT 9/65/35 ceramics, Ceramics International. 43 (2017) 4450-4455.
DOI: 10.1016/j.ceramint.2016.12.094
Google Scholar
[12]
V. Dimza, A.I. Popov, L. Le, Effects of Mn doping on dielectric properties of ferroelectric relaxor PLZT ceramics, Current Applied Physics. 17 (2017) 169-173.
DOI: 10.1016/j.cap.2016.11.010
Google Scholar
[13]
Siripong Somwan, Athipong Ngamjarurojana, Apichart Limpichaipanit, Dielectric, ferroelectric and induced strain behavior of PLZT 9/65/35 ceramics modified by Bi2O3 and CuO co-doping, Ceramics International. 42 (2016) 10690-10696.
DOI: 10.1016/j.ceramint.2016.03.181
Google Scholar
[14]
M.ElMarssi, R. Farhi, J.L. Dellis, M.D. Glinchuk, L. Seguin, D. Viehland, Ferroelectric and Glassy States in La-Modified Lead Zirconate Titanate Ceramics: A General Picture, Journal of Applied Physics. 83[10] (1998) 5371–5380.
DOI: 10.1063/1.367366
Google Scholar
[15]
Hyu-Bum Park, Chan Young Park, Young-Sik Hong, Keon Kim, Si-Joong Kim, Structural and dielectric properties of PLZT ceramics modified with Lanthanide ions, Journal of the American Ceramics Society. 82 (1999) 94-102.
DOI: 10.1111/j.1151-2916.1999.tb01728.x
Google Scholar
[16]
Xia Zeng, Xiyun He, Wenxiu Cheng, Pingsun Qiu, Bin Xia, Effect of Dy substitution on ferroelectric, optical and electro-optic properties of transparent Pb0. 90La0. 10(Zr0. 65Ti0. 35)O3 ceramics, Ceramics International. 40 (2014) 6197–6202.
DOI: 10.1016/j.ceramint.2013.11.074
Google Scholar
[17]
Robson Favaretto, Ducinei Garcia, Jos´e Antonio Eiras, Effects of WO3 on the microstructure and optical transmittance of PLZT ferroelectric ceramics, Journal of the European Ceramic Society. 27 (2007) 4037–4040.
DOI: 10.1016/j.jeurceramsoc.2007.02.172
Google Scholar
[18]
V. Priyadarsini, P.V. Salija, A. S. Divya, V. Kumar, Influence of Strontium Substitution on Ferroelectric–Relaxor Transition in PLZT (7/60/40), Journal of the American Ceramics Society. 93 (2010) 3584-3586.
DOI: 10.1111/j.1551-2916.2010.04115.x
Google Scholar
[19]
J.J. Choi, D.Y. Kim, G.T. Park, H.E. Kim, Effect of electrode configuration on phase retardation of PLZT films grown on glass substrate, J. Am. Ceram. Soc. 87 (2004) 950–952.
DOI: 10.1111/j.1551-2916.2004.00950.x
Google Scholar
[20]
G.H. Haertling, C.E. Land, Hot-Pressed (Pb, La)(Zr, Ti)O3 Ferroelectric Ceramics for Electrooptic Applications, J. Am. Ceram. Soc. 54 (1971) 1–11.
DOI: 10.1111/j.1151-2916.1970.tb12105.x-i1
Google Scholar
[21]
Shoichi Fushimi, Takuro Ikeda, Optical Study of Lead Zirconate-Titanate, Journal of the Physical Society of Japan. 20 [11] (1965) 2007-2012.
DOI: 10.1143/jpsj.20.2007
Google Scholar
[22]
Y. Xu, Ferroelectric Materials and Their Applications North-Holland, Amsterdam, 1991, p.163–215.
Google Scholar
[23]
J.G.J. Peelen, R. Metselaar, Light Scattering by Pores in Polycrystalline Materials: Transmission Properties of Alumina, Journal of Applied Physics. 45 (1974) 216-220.
DOI: 10.1063/1.1662961
Google Scholar
[24]
G.H. Haertling, Electro-optic Ceramics and Devices; in Electronic Ceramics. Edited by L. M. Levinson. Marcel Dekker, New York, 1988, p.371–492.
DOI: 10.1201/9781003065791-7
Google Scholar