Effect of Sodium Citrate on Electrochemical Behaviour of Copper in Acid Bath

Article Preview

Abstract:

The initial stages of copper electrodeposition in acid copper sulphate/sodium citrate bath were investigated with varying copper and sodium citrate concentrations. Different electrochemical measurements, including linear sweep voltammetry, cyclic voltammetry, and chronoamperometry were introduced to the study. The Scharifker-Hills model was introduced to identify the nucleation model with analysing current transients. It was observed that the increase of copper ions inhibited the cathodic polarization behaviour for the reduction of ions. On the contrary, sodium citrate promoted the cathodic polarization behaviour. The chronoamperometry results indicated that without the sodium citrate, the nucleation process corresponded to instantaneous nucleation and three-dimensional diffusion limited growth, although obvious deviations were observed. While the addition of sodium citrate changed the deviations and caused that the initial deposition kinetics followed well with the mechanism of instantaneous nucleation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

445-450

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Klaer, J., Bruns, J., Henninger, R., Siemer, K., Klenk, R., Ellmer, K., and Bräunig, D. Efficient thin-film solar cells prepared by a sequential process. Semicond. Sci. Technol. 13 (1998) 1456.

DOI: 10.1088/0268-1242/13/12/022

Google Scholar

[2] Andricacos, P.C., Uzoh, C., Dukovic, J.O., Horkans, J., and Deligianni, H. Damascene Copper electroplating for chip interconnections. Ibm Journal of Research & Development 42(1998)567-574.

DOI: 10.1147/rd.425.0567

Google Scholar

[3] Reid, J. Copper Electrodeposition: Principles and Recent Progress. Jpn. J. Appl. Phys. 40 (2001) 2650-2657.

Google Scholar

[4] Hu, C. -C., and Wu, C. -M. Effects of deposition modes on the microstructure of copper deposits from an acidic sulfate bath. Surf. Coat. Technol. 176 (2003) 75-83.

DOI: 10.1016/s0257-8972(03)00004-5

Google Scholar

[5] Khelladi, M.R., Mentar, L., Azizi, A., Sahari, A., and Kahoul, A. Materials Chemistry & Physics 115 (2009) 385-390.

DOI: 10.1016/j.matchemphys.2008.12.017

Google Scholar

[6] Li, M.G., Wei, G.Y., Li, M., Wang, J.F., Chen, L., and Zhao, X.X. Effect of HEDP on copper electroplating from non-cyanide alkaline baths. Surf. Eng. 30 (2014) 728-734.

DOI: 10.1179/1743294414y.0000000256

Google Scholar

[7] Rehim, S.S.A.E., Sayyah, S.M., and Deeb, M.M.E. Electroplating of copper films on steel substrates from acidic gluconate baths. Appl. Surf. Sci. 165 (2000) 249-254.

DOI: 10.1016/s0169-4332(00)00015-5

Google Scholar

[8] De Almeida, M., Carlos, I., Barbosa, L., Carlos, R., Lima-Neto, B., and Pallone, E. Appl. Electrochem. 32 (2002) 763-773.

DOI: 10.1023/a:1020182120035

Google Scholar

[9] Pletcher, D., Whyte, I., Walsh, F.C., and Millington, J.P. Reticulated vitreous carbon cathodes for metal ion removal from process streams part I: Mass transport studies. J. Appl. Electrochem. 21 (1991) 659-666.

DOI: 10.1007/bf01034042

Google Scholar

[10] Senna, L., Diaz, S., and Sathler, L. Electrodeposition of copper-zinc alloys in pyrophosphate-based electrolytes. J. Appl. Electrochem. 33 (2003) 1155-1161.

DOI: 10.1023/b:jach.0000003756.11862.6e

Google Scholar

[11] Ballesteros, J., Chainet, E., Ozil, P., Meas, Y., and Trejo, G. Electrodeposition of copper from non-cyanide alkaline solution containing tartrate. Int. J. Electrochem. Sci 6 (2011) 2632-2651.

Google Scholar

[12] Chassaing, E., Vu Quang, K., and Wiart, R. Kinetics of copper electrodeposition in citrate electrolytes. J. Appl. Electrochem. 16 (1986) 591-604.

DOI: 10.1007/bf01006854

Google Scholar

[13] Krishnan, R., Kanagasabapathy, M., Jayakrishnan, S., Sriveeraraghavan, S., ANATHARAM, R., and Natarajan, S. Plat. Surf. Finish. 82 (1995) 56-59.

Google Scholar

[14] Gao, H. -l., Zeng, Z. -o., and Zhao, G. -p. Electrochemical behavior of copper deposit on iron electrode in HEDP bath. Electroplating & Finishing 28 1-3 (2009) 6.

Google Scholar

[15] Zheng, J.W., Zhou, J., Zheng, B.A., Qiao, L., Jiang, L.Q., and Zhang, C. Acta Chim. Sinica 69 (2011) 2921-2928.

Google Scholar

[16] Wang, X., Li, N., Yang, Z.F., and Wang, Z.L. Effects of Triethanolamine and K-4 Fe(CN)(6) upon Electroless Copper Plating. J. Electrochem. Soc. 157 (2010) D500-D502.

DOI: 10.1149/1.3462980

Google Scholar

[17] Lantasov, Y., Palmans, R., and Maex, K. New plating bath for electroless copper deposition on sputtered barrier layers. Microelectron. Eng. 50, (2000) 441-447.

DOI: 10.1016/s0167-9317(99)00313-5

Google Scholar

[18] Barrado, E., Rodriguez, J., Hernández, P., and Castrillejo, Y. Electroanal. Chem. 768 (2016) 89-101.

Google Scholar

[19] Beltowska-Lehman, E., and Ozga, P. Effect of complex formation on the diffusion coefficient of CuII in citrate solution containing NiII and MoVI. Electrochim. Acta 43 (1998) 617-629.

DOI: 10.1016/s0013-4686(97)00100-x

Google Scholar

[20] Mehrizi, S., Sohi, M.H., and Saremi, M. Effect of sodium citrate as complexing on electrochemical behavior and speciation diagrams of CoFeNiCu baths. Ionics. (2013) 1-8.

DOI: 10.1007/s11581-012-0815-8

Google Scholar

[21] Silva, F.L., do Lago, D.C., D'Elia, E., and Senna, L. J. Appl. Electrochem. 40 (2010) 2013-(2022).

Google Scholar

[22] Hills, G., Pour, A.K., and Scharifker, B. (1983) The formation and properties of single nuclei. Electrochim. Acta 28, 891-898.

DOI: 10.1016/0013-4686(83)85164-0

Google Scholar

[23] Southampton Electrochemistry Group. (2001) Instrumental Methods in Electrochemistry. UK: Horwood Publishing.

Google Scholar