[1]
Yip R, Binkin NJ, Trowbridge FL. Altitude and childhood growth. The Journal of Pediatrics. 113, 486-489 (1988).
DOI: 10.1016/s0022-3476(88)80633-4
Google Scholar
[2]
R. Daud, Mohammed Rafiq Abdul Kadir, S. Izman, Amir Putra Md Saad, Muhammad Hisyam Lee, Aminudin Che Ahmad, Three-Dimensional Morphometric Study of the Trapezium Shape of the Trochlea Tali. Foot and Ankle Surgery. 52 (2013).
DOI: 10.1053/j.jfas.2013.03.007
Google Scholar
[3]
Balonov MI, Shrimpton PC. Effective dose and risks from medical x-ray procedures. Annals of the ICRP. 41, 129-141 (2012).
DOI: 10.1016/j.icrp.2012.06.002
Google Scholar
[4]
Brix G, Nissen-Meyer S, Lechel U, Nissen-Meyer J, Griebel J, Nekolla EA, Becker C, Reiser M. Radiation exposures of cancer patients from medical X-rays: How relevant are they for individual patients and population exposure? European Journal of Radiology. 72, 342-347 (2009).
DOI: 10.1016/j.ejrad.2008.07.009
Google Scholar
[5]
de González AB, Darby S. Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries. The Lancet. 363, 345-351 (2004).
DOI: 10.1016/s0140-6736(04)15433-0
Google Scholar
[6]
Puustinen L, Numminen K, Uusi-Simola J, Sipponen T. P101 Radiation exposure during nasojejunal intubation for MRI. Journal of Crohn's and Colitis, Supplement 1. S50 (2012).
DOI: 10.1016/s1873-9946(12)60121-4
Google Scholar
[7]
Dalbeth N, Doyle A, Boyer L, Rome K, Survepalli D, Sanders A, Sheehan T, Lobo M, Gamble G, McQueen FM. Development of a computed tomography method of scoring bone erosion in patients with gout, validation and clinical implications. Rheumatology. 50(2), 410-6 (2010).
DOI: 10.1093/rheumatology/keq335
Google Scholar
[8]
Hatzantonis C, Agur A, Naraghi A, Gautier S, McKee N. Dissecting the Accessory Soleus Muscle: A Literature Review, Cadaveric Study, and Imaging Study. Clinical Anatomy. 24, 903-910 (2011).
DOI: 10.1002/ca.21188
Google Scholar
[9]
Brenner E, Piegger J, Platzer W. The trapezoid form of the trochlea tali. Surgical and Radiologic Anatomy. 25, 216-225 (2003).
DOI: 10.1007/s00276-003-0122-1
Google Scholar
[10]
Tourret LJ, Talkhani IS. Ankle articular surface diagram for documentation of arthroscopic findings—a cadaveric study. The Foot. 14, 139-143 (2004).
DOI: 10.1016/j.foot.2004.03.001
Google Scholar
[11]
Bien Z, Song W-K. Blend of soft computing techniques for effective human–machine interaction in service robotic systems. Fuzzy Sets and Systems. 134, 5-25 (2003).
DOI: 10.1016/s0165-0114(02)00227-0
Google Scholar
[12]
Zadeh LA. Fuzzy logic, neural networks, and soft computing. Commun ACM. 37, 77-84 (1994).
DOI: 10.1145/175247.175255
Google Scholar
[13]
Lukić S, Ćojbašić Ž, Jović N, Popović M, Bjelaković B, Dimitrijević L, Bjelaković L. Artificial neural networks based prediction of cerebral palsy in infants with central coordination disturbance. Early Human Development. 88, 547-553 (2012).
DOI: 10.1016/j.earlhumdev.2012.01.001
Google Scholar
[14]
Pandey B, Mishra RB. Knowledge and intelligent computing system in medicine. Computers in Biology and Medicine. 39, 215-230 (2009).
DOI: 10.1016/j.compbiomed.2008.12.008
Google Scholar
[15]
Schöllhorn WI. Applications of artificial neural nets in clinical biomechanics. Clinical Biomechanics. 19, 876-898 (2004).
DOI: 10.1016/j.clinbiomech.2004.04.005
Google Scholar
[16]
B. Reggiani, A. Leardini, F. Corazza, M. Taylor. Finite element analysis of a total ankle replacement during the stance phase of gait. Journal Biomechanics. 39(8), 1435-1443 (2006).
DOI: 10.1016/j.jbiomech.2005.04.010
Google Scholar
[17]
Jay Elliot B., Gundapaneni D., Goswani T. Finite element analysis of stress and wear characterization in total ankle replacements. Journal Mech. Behaviour Biomedical Material. 34, 134-145 (2014).
DOI: 10.1016/j.jmbbm.2014.01.020
Google Scholar
[18]
F. A. Zakaria, R. Daud, H. Mas Ayu, S. H. Tomadi, M. S. Salwani and Mohammed Rafiq Abdul Kadir, The Effect of Position and Different Size of Radial Hole on Performance of Cannulated Pedicle Screw. Matec Web of Conferences. 108 (2017).
DOI: 10.1051/matecconf/201710813001
Google Scholar
[19]
Tu JV. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. Journal of Clinical Epidemiology. 49, 1225-1231 (1996).
DOI: 10.1016/s0895-4356(96)00002-9
Google Scholar
[20]
Parkinson RJ, Callaghan JP. The use of artificial neural networks to reduce data collection demands in determining spine loading: a laboratory based analysis. Computer Methods in Biomechanics and Biomedical Engineering. 12, 511-522 (2009).
DOI: 10.1080/10255840902740620
Google Scholar
[21]
Aghav RM, Kumar S, Mukherjee SN. Artificial neural network modeling in competitive adsorption of phenol and resorcinol from water environment using some carbonaceous adsorbents. Journal of Hazardous Materials. 188, 67-77 (2011).
DOI: 10.1016/j.jhazmat.2011.01.067
Google Scholar
[22]
Mukherjee I, Routroy S. Comparing the performance of neural networks developed by using Levenberg–Marquardt and Quasi-Newton with the gradient descent algorithm for modelling a multiple response grinding process. Expert Systems with Applications. 39, 2397-2407 (2012).
DOI: 10.1016/j.eswa.2011.08.087
Google Scholar
[23]
Evans A. The paediatric flat foot and general anthropometry in 140 Australian school children aged 7 - 10 years. Journal of Foot and Ankle Research. 4, 12 (2011).
DOI: 10.1186/1757-1146-4-12
Google Scholar
[24]
Stauffer RN, Chou EY, Brewster RC. Force and motion analysis of the normal, diseased, and prosthetic ankle joint. Clinical Orthopaedics. 127, 189-196 (1977).
DOI: 10.1097/00003086-197709000-00027
Google Scholar
[25]
Anderson DD, Goldsworthy JK, Wendy L, Rudert MJ, Tochigi Y, Brown TD. Physical Validation of a Patient-Specific Contact Finite Element Model of the Ankle. Journal of biomechanics. 40(8), 1662-1669 (2007).
DOI: 10.1016/j.jbiomech.2007.01.024
Google Scholar
[26]
Vrahas M, Fu F, Veenis B. Intraarticular contact stresses with simulated ankle malunions. J Orthop Trauma. 8, 8 (1994).
DOI: 10.1097/00005131-199404000-00014
Google Scholar
[27]
Gill, L.H., Challenges in total ankle arthroplasty. Foot Ankle Int. 25(4), 195-207 (2004).
DOI: 10.1177/107110070402500402
Google Scholar
[28]
Pappas, M.J. and Buechel, F.F., Biomechanics and design rationale: The Buechel-Pappas ankle replacement system.
Google Scholar