Its Optical Property and Characterization of Silver Antimony Sulfide Nanostructured Clusters Synthesized Using a Facile Wet Chemical Route

Article Preview

Abstract:

Cubic phase of silver antimony sulfide (AgSbS2) nanostructures were successfully synthesized from silver nitrate (AgNO3), antimony acetate (CH3CO2)3Sb, and sodiumthiosulphate pentahydrate (Na2S2O3.5H2O) in propylene glycol (PG) without using any surfactants or splitting agents by a facile wet chemical route at 160 OC for 30 min. The XRD, SEM and TEM reveal AgSbS2 nanostructures forming the clusters. Due to the UV-visible absorption shows its direct band gap, is 1.80 eV, AgSbS2 is found to be the excellent material for the solar energy converters. And the possible formation of AgSbS2 nanostructured cluster was also discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

55-59

Citation:

Online since:

March 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. G. Garza, S. Shaji, A. C. Rodriguez, T. K. Das Roy and B. Krihnan: Appl. Surf. Sci. Vol. 257 (2011), p.10834.

Google Scholar

[2] N. Tipcompor, S. Thongtem and T. Thongtem: J. Nanomater Vol. 2013 (2013), Art ID 970489.

Google Scholar

[3] B. Zhou, M. Li, Y. Wu, C. Yang, W. Zhang and C. Li: Chem. Eur. J. Vol. 21 (2015), p.11143.

Google Scholar

[4] M. Han, J. Jia and W. Wang: Mater. Lett. Vol. 179 (2016), p.130.

Google Scholar

[5] L. Yu, M. Han, Y. Wan, J. Jia and G. Yi: Mater. Lett. Vol. 161 (2015), p.447.

Google Scholar

[6] T. Wagner, J. Gutwirth, P. Nemec, M. Frumar,T. Wagner, M. Vlcek, V. Perina, A. Mackova and V. Hnatovitz: Appl. Phys. A Vol. 79 (2004), p.1561.

DOI: 10.1007/s00339-004-2847-z

Google Scholar

[7] T. Daniel, J. Henry, K. Mohanraj and G. Sivakumar: Mater. Chem. Phys. Vol. 181 (2016), p.415.

Google Scholar

[8] S. Berri, D. Maouche, N. Bouarissa and Y. Medkour: Mater. Sci. Semicond. Process. Vol. 16 (2013), p.1439.

Google Scholar

[9] J. Gutwirth, T. Wagner, E. Kotulánová, P. Bezdička, v. Peřina, M. Hrdlička, M. Vlček, C. Drašar and M. Frumar: J. Phys. Chem. Solids Vol. 68 (2007), p.835.

DOI: 10.1016/j.jpcs.2007.03.030

Google Scholar

[10] Powder Diffract. File, JCPDS-ICDD, 12 Campus Boulevard, Newtown Square, PA 19073-3273, U.S.A. (2001).

Google Scholar

[11] S. Kaowphong, T. Thongtem, O. Yayapao and S. Thongtem: Mater. Lett. Vol. 65 (2011), p.3405.

DOI: 10.1016/j.matlet.2011.07.079

Google Scholar

[12] J. Han, Z. Liu, K. Guo, X. Zhang, T. Hong and B. Wang: Apply. Catal., B Vol. 179 (2015), p.61.

Google Scholar

[13] T. Thongtem, N. Tipcompor and S. Thongtem: Mater. Lett. Vol. 64 (2010), p.755.

Google Scholar

[14] S. Bose, C. Galande, S. Chockalingam, R. Banejee, P. Raychaudhuri and P. Ayyub: J. Phys.: Condens. Matter Vol. 21 (2009), pp.205702-1.

DOI: 10.1088/0953-8984/21/20/205702

Google Scholar

[15] J. Speight: Lange's handbook chem, 16th ed. N. Y, McGraw-Hill Comp. Inc (2005).

Google Scholar