Effect of Cold Rolling on the Microstructure and Hardness of Al5Cr12Fe35Mn28Ni20 High Entropy Alloy

Article Preview

Abstract:

The microstructure and hardness changes of a non-equiatomic Al5Cr12Fe35Mn28Ni20high-entropy-alloys (HEA) with cold rolling are presented here. Using a variety of characterization methods, it is shown that the alloy is single FCC phase structure which doesn't change with cold rolling up to90%CR. With increasing the cold rolling reduction ratio, the hardness increased and the dendritic structures are broken and refined.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

241-245

Citation:

Online since:

March 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Zhang, T. Ting, Z. Tang, M. C. Gao, K. A. Dahmen, P. K. Liaw, and Z. Ping, Progress in Materials Science Microstructures and properties of high-entropy alloys, Prog. Mater. Sci., vol. 61, no. November 2013, p.1–93, (2014).

DOI: 10.1016/j.pmatsci.2013.10.001

Google Scholar

[2] C. Tong, Y. Chen, S. Chen, J. Yeh, T. Shun, C. Tsau, S. Lin, and S. Chang, Microstructure Characterization of Al x CoCrCuFeNi High-Entropy Alloy System with Multiprincipal Elements, vol. 36, no. April, (2005).

DOI: 10.1007/s11661-005-0283-0

Google Scholar

[3] C. Tsau and Y. Chang, Microstructures and Mechanical Properties of TiCrZrNbNx Alloy Nitride Thin Films, p.5012–5021, (2013).

DOI: 10.3390/e15115012

Google Scholar

[4] K. Tsai, M. Tsai, and J. Yeh, Sluggish diffusion in Co – Cr – Fe – Mn – Ni high-entropy alloys, Acta Mater., vol. 61, no. 13, p.4887–4897, (2013).

DOI: 10.1016/j.actamat.2013.04.058

Google Scholar

[5] C. Tong, M. Chen, S. Chen, J. Yeh, T. Shun, S. Lin, and S. Chang, Mechanical Performance of the Al x CoCrCuFeNi High-Entropy Alloy System with Multiprincipal Elements, vol. 36, no. May, p.1263–1271, (2005).

DOI: 10.1007/s11661-005-0218-9

Google Scholar

[6] Y. J. Zhou, Y. Zhang, Y. L. Wang, G. L. Chen, Y. J. Zhou, Y. Zhang, Y. L. Wang, and G. L. Chen, Solid solution alloys of properties Solid solution alloys of AlCoCrFeNiTi x with excellent room-temperature, vol. 181904, no. 2007, (2014).

DOI: 10.1063/1.2734517

Google Scholar

[7] X. Yang, Y. Zhang, and P. K. Liaw, Microstructure and Compressive Properties of NbTiVTaAl x High Entropy Alloys, vol. 36, p.292–298, (2012).

DOI: 10.1016/j.proeng.2012.03.043

Google Scholar

[8] M. Tsai, Physical Properties of High Entropy Alloys, p.5338–5345, (2013).

Google Scholar

[9] Y. Lu, Y. Dong, L. Jiang, T. Wang, T. Li, and Y. Zhang, A Criterion for Topological Close-Packed Phase Formation in High Entropy Alloys, p.2355–2366, (2015).

DOI: 10.3390/e17042355

Google Scholar

[10] I. S. Wani and T. Bhattacharjee, deposition Processing of AlCoCrFeNiTi high entropy alloy by atmospheric plasma spraying.

Google Scholar

[11] Y. L. Chou, Y. C. Wang, J. W. Yeh, and H. C. Shih, in chloride-containing sulphate solutions, Corros. Sci., vol. 52, no. 10, p.3481–3491, (2010).

DOI: 10.1016/j.corsci.2010.06.025

Google Scholar

[12] H. Alloys, Three Strategies for the Design of Advanced High-Entropy Alloys, (2016).

Google Scholar

[13] I. S. Wani, T. Bhattacharjee, S. Sheikh, Y. P. Lu, S. Chatterjee, S. Guo, N. Tsuji, T. Bhattacharjee, S. Sheikh, Y. P. Lu, and S. Chatterjee, Entropy Alloy, vol. 3831, no. March, (2016).

DOI: 10.1080/21663831.2016.1160451

Google Scholar

[14] M. Komarasamy, N. Kumar, Z. Tang, R. S. Mishra, and P. K. Liaw, Effect of Microstructure on the Deformation Mechanism of Friction Stir-Processed Al 0 . 1 CoCrFeNi High Entropy Alloy, vol. 3, no. 1, p.30–34, (2015).

DOI: 10.1080/21663831.2014.958586

Google Scholar

[15] J. Joseph, T. Jarvis, X. Wu, P. Hodgson, and D. M. Fabijanic, Author â€TM s Accepted Manuscript, Mater. Sci. Eng. A, (2015).

Google Scholar