Sulfide Minerals Bio-Oxidation of a Low-Grade Refractory Gold Ore

Article Preview

Abstract:

This paper describes the oxidative dissolution kinetics of sulfides with gold occlusion within pyrite and arsenopyrite. Shake flasks tests and column leaching of a low grade gold ore from China were carried out with domesticated mixed acidophiles isolated from acid mine drainage. Both test show that the main factors accelerating sulfide oxidation was mainly temperature and redox potential. Column bio-oxidation of mineral with a particle size less than 10 mm at 60°C resulted in higher mineral decomposition, finer fractions and eventually higher sulfide oxidation than that at 30°C. Sulfide-S dissolution increased from 58% to 77% from 30°C to 60°C after 247 ds of bio-oxidation. Further investigation into microbial community attached to the ore surface and in the leachate during the bio-oxidation was done by Real-time PCR assays. Organism of genera Acidithiobacillus was the most dominant species in both leachate and ore surface at lower temperature. For the Archaea, the iron oxidizing microbial Ferroplasma showed its predominance of 60°C. Mineral dissolution kinetics and microbial community in bio-oxidation was lucubrated in this work and suggestions were provided for pre-treatment of refractory gold ore.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

157-167

Citation:

Online since:

May 2018

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. Jia, J. Kang, W. C. Zhang, W. M. Wang, C. Yang, H. Sun, et al. Surface aging behaviour of Fe-based amorphous alloys as catalysts during heterogeneous photo Fenton-like process for water treatment. Applied Catalysis B Environmental. (204) (2017).

DOI: 10.1016/j.apcatb.2016.12.001

Google Scholar

[2] F. Acevedo, The use of reactors in biomining processes, Electron. J. Biotechnol. 3(3) (2000) 10-11.

Google Scholar

[3] X. B. Qiu,J. K. Wen, B. Wu,L. C. Zou, M. L. Liu, H. Shang, Biooxidation pretreatment of high sulfur high clay carlin-type gold concentrates containing arsenic and carbon, Chin. J. Rare Metals. 37(3) (2013) 783-790.

Google Scholar

[4] T. Oved, A. Shaviv, T. Goldrath, R. T. Mandelbaum, D. Minz, Influence of effluent irrigation on community composition and function of ammonia-oxidizing bacteria in soil, Appl. Envrion. Microbiol. 67(8) (2001) 3426-33.

DOI: 10.1128/aem.67.8.3426-3433.2001

Google Scholar

[5] K. L. Temple, A. R. Colmer, The autotrophic oxidation of iron by a new bacterium: Thiobacillus ferrooxidans, J. Bacteriol. 62 (1951) 605-611.

DOI: 10.1128/jb.62.5.605-611.1951

Google Scholar

[6] M. Boon, J. J. Heijnen, G. S. Hansford, The mechanism and kinetics of bioleaching sulphide Minerals, Miner. Process. Extr. Met. Rev. 19 (1998) 107-115.

DOI: 10.1080/08827509608962433

Google Scholar

[7] G. Meruane, C. Salhe, J. Wiertz, T. Vargas, Novel electrochemical-enzymatic model which quantifies the effect of the solution Eh on the kinetics of ferrous iron oxidation with Acidithiobacillus ferrooxidans, Biotechnol. Bioeng. 80 (2002) 280-288.

DOI: 10.1002/bit.10371

Google Scholar

[8] D. E. Rawlings, H. Tributsch, G. S. Hansford, Reasons why Leptospirillum,-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores, Microbiology. 145 (1999).

DOI: 10.1099/13500872-145-1-5

Google Scholar

[9] Y. L. He, P. H. Rao, W. Q. Zhang, P. Jin, Diatomite precoated nonwoven membrane bioreactor for domestic wastewater reclamation, Journal of Donghua University. 32(1) (2015) 109-112.

Google Scholar

[10] G. J. Olson, J. A. Brierley, C. L. Brierley, Bioleaching review part B: Progress in bioleaching: applications of microbial processed by the minerals industries, Appl. Microbiol. Biotechnol. (63) (2003) 249-257.

DOI: 10.1007/s00253-013-5095-3

Google Scholar

[11] P. L. Bond, G. K. Druschel, J. F. Banfield, Comparison of acid mine drainage microbial communities in physically and geochemically distinct ecosystems, Appl. Environ. Microbiol. 66(11) (2000) 4962-4971.

DOI: 10.1128/aem.66.11.4962-4971.2000

Google Scholar

[12] K. J. Edwards, P. L. Bond, T. M. Gihring, J. F. Banfield, An archaeal iron-oxidizing extreme acidophile important in acid mine drainage, Science. 287 (2000) 1796-1799.

DOI: 10.1126/science.287.5459.1796

Google Scholar

[13] O. V. Golyshina, T. A. Pivovarova, G. I. Karavaiko, T. F. Kondrat'eva, E. R. B. Moore, W. R. Abraham, H. Lundsorf, K.N. Timmis, M. M. Yakimov, P. N. Golyshin, Ferroplasma acidiphilum gen. nov., sp. Nov., an acidophilic, autotrophic, ferrous-iron oxidizing, cell wall-lackingm mesophilic member of the Ferroplasmaceae fam. Nov., comprising a distinct lineage of the archaea, Int. J. Syst. Evol. Microbiol. 50 (2000).

DOI: 10.1099/00207713-50-3-997

Google Scholar

[14] N. Okibe, M. Geriche, K. B. Hallberg, D. B. Johnson, Enumeration and characterization of acidophilic microorganisms isolated from a pilot plant stirred-tank bioleaching operation, Appl. Environ. Microbiol. 69 (2003) 1936-(1943).

DOI: 10.1128/aem.69.4.1936-1943.2003

Google Scholar

[15] Y. Rodriguez, A. Ballester, M. L. Blazquez, F. Gonzalez, J. A. Munoz, New information of the pyrite bioleaching mechanism at low and high temperature, Hydrometallurgy. 71 (2003) 37-46.

DOI: 10.1016/s0304-386x(03)00172-5

Google Scholar

[16] P. Bhakta, B. Arthur, Heap bio-oxidation and gold recovery at Newmont mining: first-year results, JOM. (2002) 31-34.

DOI: 10.1007/bf02709218

Google Scholar

[17] Brierley J. Heap leaching of gold bearing deposits, theory and operational description. In: Rawlings DE (ed) Biomining: Theory, Microbes and Industrial Processes. Springer Verlag, Berlin, Germany; (1997). 103- 115.

DOI: 10.1007/978-3-662-06111-4_5

Google Scholar

[18] J. A. Brierley, Response of microbial systems to thermal stress in bio-oxidation heap pretreatment of refractory gold ores, Hydrometallurgy. 71 (2003) 13-19.

DOI: 10.1016/s0304-386x(03)00143-9

Google Scholar

[19] A. Schippers, Microorganisms involved in bioleaching and nucleic acid-based molecular methods for their identification and quantification, In: Donati ER and Sand W (eds) Microbial processing of metal sulfides. Springer, Berlin, 2007, pp.3-34.

DOI: 10.1007/1-4020-5589-7_1

Google Scholar

[20] B. W. Chen, X. Y. Liu, W. Y. Liu, J. K. Wen, Application of clone library analysis and real-time PCR for comparison of microbial communities in a low-grade copper sulfide ore bioheap leachate, J. Ind. Microbiol. Biotechnol. 36 (2009) 1409-1416.

DOI: 10.1007/s10295-009-0627-7

Google Scholar

[21] X. Y. Liu, B. W. Chen, J. K. Wen, R. M. Ruan, Leptospirillum forms a minor portion of the population in Zijinshan commercial non-aeration copper bioleaching heap identified by 16S rRNA clone libraries and real-time PCR, Hydrometallurgy. 104(3-4) (2010).

DOI: 10.1016/j.hydromet.2010.03.024

Google Scholar

[22] R. M. Ruan, X. Y. Liu, G. Zou, J. H. Chen, J. K. Wen, D. Z. Wang, Industrial practice of a distinct bioleaching system operated at low pH, high ferric concentration, elevated temperature and low redox potential for secondary copper sulfide, Hydrometallurgy. 108(1-2) (2011).

DOI: 10.1016/j.hydromet.2011.03.008

Google Scholar

[23] G. Zou, R. M. Ruan, X. Y. Liu, Z. L.Wu, Microbial community structure and redox potential in a copper sulphide bioleaching system with low pH, high ferric concentration and elevated temperature, In: G. Z. Qiu, T. Jiang, W.Q. Qin et al (eds) Biohydrometallurgy: Biotech key to unlock mineral resources value, Proceedings of 19th International Biohydrometallurgy Symposium. Central South University Press, China, 2011, p.994-(2001).

DOI: 10.1016/j.hydromet.2011.03.008

Google Scholar

[24] R. B. Hawkes, P. D. Franzmann, J. J. Plumb, Moderate thermophiles including Ferroplasma cupricumulans, sp. nov. dominate an industrial-scale chalcocite heap bioleaching operation, Hydrometallurgy. 83(1-4) (2006) 229-236.

DOI: 10.1016/j.hydromet.2006.03.027

Google Scholar

[25] T. Rohwerder, Gehrke T, Kinzler K, Sand W. Bioleaching review part A: Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation, Appl. Microbiol. Biotechnol. 63 (2003) 239-248.

DOI: 10.1007/s00253-003-1448-7

Google Scholar

[26] D. E. Rawlings, Characteristics and adaptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates, Microbial Cell Factories. 4(1) (2005) 1-15.

DOI: 10.1186/1475-2859-4-13

Google Scholar

[27] Z. L. Wu, Z. S. Huang, R. M. Ruan, S. P. Zhong, B. K. C. Chan, Effect of temperature on column bioleaching of a refractory gold ore, Advanced Materials Research.825 (2013) 352-355.

DOI: 10.4028/www.scientific.net/amr.825.352

Google Scholar

[28] C. A. Jones, B. D. Kelly,Growth of Thiobacillus ferrooxidans on ferrous iron in chemostat culture: influence of product and substrate inhibition, J. Chem. Technol. Biotechnol. 33B (4) (1983) 241-261.

DOI: 10.1002/jctb.280330407

Google Scholar

[29] H. M. Lizama, I. Suzuki, Synergistic comperitive inhibition of ferrous iron oxidation by Thiobacillus ferrooxidans by increasing concentrations of ferric iron and cells, Appl. Environ. Microbiol. 32 (1989) 2588-2591.

DOI: 10.1128/aem.55.10.2588-2591.1989

Google Scholar

[30] P. Jochen, V. O. Tunde, The effect of total iron concentration and iron speciation on the rate of ferrous iron oxidation kinetics of Leptospirillum ferriphilum in continuous tank systems, Advanced Materials Research. 20-21 (2007) 447-451.

DOI: 10.4028/www.scientific.net/amr.20-21.447

Google Scholar

[31] T. V. Ojumu, J. Petersen, G. S. Hansford, The effect of dissolved cations on microbial ferrous-iron oxidation by Leptospirillum ferriphilum in continuous culture, Hydrometallurgy. 94(1-4) (2008) 69-76.

DOI: 10.1016/j.hydromet.2008.05.047

Google Scholar

[32] V. O. Tunde, P. Jochen, S. H. Geoffrey, The effect of aluminium and magnesium sulphate on the rate of ferrous iron oxidation by Leptospirillum ferriphilum in continuous culture, Advanced Materials Research. 21-22 (2007) 156-159.

DOI: 10.4028/www.scientific.net/amr.20-21.156

Google Scholar

[33] T. Cabral, I. Ignatiadis, Mechanistic study of the pyrite-solution interface during the oxidative bacterial dissolution of pyrite (FeS2) by using electrochemical techniques, In: Proceedings of the International Biohydrometallurgy Symposium. Elsevier, Amsterdam, 1999, pp.357-366.

DOI: 10.1016/s1572-4409(99)80036-4

Google Scholar

[34] P. R. Holmes, F. K. Crundwell, The kinetics of the oxidation of pyrite by ferric ions and dissolved oxygen: An electrochemical study, Geochim. Cosmochim. Acta. 64 (2000) 263-274.

DOI: 10.1016/s0016-7037(99)00296-3

Google Scholar

[35] S. C. Bouffard, B. F. Rivera-Vasquez, D. G. Dixon, Leaching kinetics and stoichiometry of pyrite oxidation from a pyrite-marcasite concentrate in acid ferric sulfate media, Hydrometallurgy. 84(3-4) (2006) 225-238.

DOI: 10.1016/j.hydromet.2006.05.008

Google Scholar

[36] O. H. Tuovinen, T. M. Bhatti, J. M. Bigham, K. B. Hallberg, G. J. Oswaldo, E. B. Lindsrom, Oxidative dissolution of arsenopyrite by mesophilic and moderately thermophilic acidophilest, Appl. Environ. Microbiol. 60(9) (1994) 3268-3274.

DOI: 10.1128/aem.60.9.3268-3274.1994

Google Scholar

[37] B. Wu, J. K. Wen, B. W. Chen, G. C. Yao, D. Z. Wang, Control of redox potential by oxygen limitation in selective bioleaching of chalcocite and pyrite, Rare Metals. 33(5) (2014) 622-627.

DOI: 10.1007/s12598-014-0364-6

Google Scholar

[38] J. Yu, H. Y. Yang, L. L. Tong, J. Zhu, Intensified bioleaching of low-grade molybdenite concentrate by ferrous sulfate and pyrite, Rare Metals. 34(3) (2015) 207-214.

DOI: 10.1007/s12598-014-0437-6

Google Scholar

[39] M. Descostes, P. Vitorge, C. Beaucaire, Pyrite dissolution in acidic media, Geochim. Cosmochim. Acta. 68 (2004) 4559-4569.

DOI: 10.1016/j.gca.2004.04.012

Google Scholar

[40] N. Okibe, D. B. Johnson, Biooxidation of pyrite by defined mixed cultures of moderately thermophilic acidophiles in pH-controlled bioreactors: significance of microbial interactions, Biotechnol Bioeng. 87(5) (2004) 574-583.

DOI: 10.1002/bit.20138

Google Scholar

[41] C. S. Demergasso, P. Galleguillos, G. Escudero, A. Zepeda, D. Castillo, E. O. Casamayor, Molecular charatrizationof microbial populations in a low-grade copper ore bioleaching test heap, Hydrometallurgy. 80 (2005) 241-253.

DOI: 10.1016/j.hydromet.2005.07.013

Google Scholar

[42] T. C. Logan, T. Seal, J. A. Brierley, Whole-ore heap biooxidation of sulfidic gold-bearing ores, In: D. E. Rawlings, D. B. Johnson (eds) Biomining. Springer, German, 2007, pp.113-137.

DOI: 10.1007/978-3-540-34911-2_6

Google Scholar