[1]
Z. Jia, J. Kang, W. C. Zhang, W. M. Wang, C. Yang, H. Sun, et al. Surface aging behaviour of Fe-based amorphous alloys as catalysts during heterogeneous photo Fenton-like process for water treatment. Applied Catalysis B Environmental. (204) (2017).
DOI: 10.1016/j.apcatb.2016.12.001
Google Scholar
[2]
F. Acevedo, The use of reactors in biomining processes, Electron. J. Biotechnol. 3(3) (2000) 10-11.
Google Scholar
[3]
X. B. Qiu,J. K. Wen, B. Wu,L. C. Zou, M. L. Liu, H. Shang, Biooxidation pretreatment of high sulfur high clay carlin-type gold concentrates containing arsenic and carbon, Chin. J. Rare Metals. 37(3) (2013) 783-790.
Google Scholar
[4]
T. Oved, A. Shaviv, T. Goldrath, R. T. Mandelbaum, D. Minz, Influence of effluent irrigation on community composition and function of ammonia-oxidizing bacteria in soil, Appl. Envrion. Microbiol. 67(8) (2001) 3426-33.
DOI: 10.1128/aem.67.8.3426-3433.2001
Google Scholar
[5]
K. L. Temple, A. R. Colmer, The autotrophic oxidation of iron by a new bacterium: Thiobacillus ferrooxidans, J. Bacteriol. 62 (1951) 605-611.
DOI: 10.1128/jb.62.5.605-611.1951
Google Scholar
[6]
M. Boon, J. J. Heijnen, G. S. Hansford, The mechanism and kinetics of bioleaching sulphide Minerals, Miner. Process. Extr. Met. Rev. 19 (1998) 107-115.
DOI: 10.1080/08827509608962433
Google Scholar
[7]
G. Meruane, C. Salhe, J. Wiertz, T. Vargas, Novel electrochemical-enzymatic model which quantifies the effect of the solution Eh on the kinetics of ferrous iron oxidation with Acidithiobacillus ferrooxidans, Biotechnol. Bioeng. 80 (2002) 280-288.
DOI: 10.1002/bit.10371
Google Scholar
[8]
D. E. Rawlings, H. Tributsch, G. S. Hansford, Reasons why Leptospirillum,-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores, Microbiology. 145 (1999).
DOI: 10.1099/13500872-145-1-5
Google Scholar
[9]
Y. L. He, P. H. Rao, W. Q. Zhang, P. Jin, Diatomite precoated nonwoven membrane bioreactor for domestic wastewater reclamation, Journal of Donghua University. 32(1) (2015) 109-112.
Google Scholar
[10]
G. J. Olson, J. A. Brierley, C. L. Brierley, Bioleaching review part B: Progress in bioleaching: applications of microbial processed by the minerals industries, Appl. Microbiol. Biotechnol. (63) (2003) 249-257.
DOI: 10.1007/s00253-013-5095-3
Google Scholar
[11]
P. L. Bond, G. K. Druschel, J. F. Banfield, Comparison of acid mine drainage microbial communities in physically and geochemically distinct ecosystems, Appl. Environ. Microbiol. 66(11) (2000) 4962-4971.
DOI: 10.1128/aem.66.11.4962-4971.2000
Google Scholar
[12]
K. J. Edwards, P. L. Bond, T. M. Gihring, J. F. Banfield, An archaeal iron-oxidizing extreme acidophile important in acid mine drainage, Science. 287 (2000) 1796-1799.
DOI: 10.1126/science.287.5459.1796
Google Scholar
[13]
O. V. Golyshina, T. A. Pivovarova, G. I. Karavaiko, T. F. Kondrat'eva, E. R. B. Moore, W. R. Abraham, H. Lundsorf, K.N. Timmis, M. M. Yakimov, P. N. Golyshin, Ferroplasma acidiphilum gen. nov., sp. Nov., an acidophilic, autotrophic, ferrous-iron oxidizing, cell wall-lackingm mesophilic member of the Ferroplasmaceae fam. Nov., comprising a distinct lineage of the archaea, Int. J. Syst. Evol. Microbiol. 50 (2000).
DOI: 10.1099/00207713-50-3-997
Google Scholar
[14]
N. Okibe, M. Geriche, K. B. Hallberg, D. B. Johnson, Enumeration and characterization of acidophilic microorganisms isolated from a pilot plant stirred-tank bioleaching operation, Appl. Environ. Microbiol. 69 (2003) 1936-(1943).
DOI: 10.1128/aem.69.4.1936-1943.2003
Google Scholar
[15]
Y. Rodriguez, A. Ballester, M. L. Blazquez, F. Gonzalez, J. A. Munoz, New information of the pyrite bioleaching mechanism at low and high temperature, Hydrometallurgy. 71 (2003) 37-46.
DOI: 10.1016/s0304-386x(03)00172-5
Google Scholar
[16]
P. Bhakta, B. Arthur, Heap bio-oxidation and gold recovery at Newmont mining: first-year results, JOM. (2002) 31-34.
DOI: 10.1007/bf02709218
Google Scholar
[17]
Brierley J. Heap leaching of gold bearing deposits, theory and operational description. In: Rawlings DE (ed) Biomining: Theory, Microbes and Industrial Processes. Springer Verlag, Berlin, Germany; (1997). 103- 115.
DOI: 10.1007/978-3-662-06111-4_5
Google Scholar
[18]
J. A. Brierley, Response of microbial systems to thermal stress in bio-oxidation heap pretreatment of refractory gold ores, Hydrometallurgy. 71 (2003) 13-19.
DOI: 10.1016/s0304-386x(03)00143-9
Google Scholar
[19]
A. Schippers, Microorganisms involved in bioleaching and nucleic acid-based molecular methods for their identification and quantification, In: Donati ER and Sand W (eds) Microbial processing of metal sulfides. Springer, Berlin, 2007, pp.3-34.
DOI: 10.1007/1-4020-5589-7_1
Google Scholar
[20]
B. W. Chen, X. Y. Liu, W. Y. Liu, J. K. Wen, Application of clone library analysis and real-time PCR for comparison of microbial communities in a low-grade copper sulfide ore bioheap leachate, J. Ind. Microbiol. Biotechnol. 36 (2009) 1409-1416.
DOI: 10.1007/s10295-009-0627-7
Google Scholar
[21]
X. Y. Liu, B. W. Chen, J. K. Wen, R. M. Ruan, Leptospirillum forms a minor portion of the population in Zijinshan commercial non-aeration copper bioleaching heap identified by 16S rRNA clone libraries and real-time PCR, Hydrometallurgy. 104(3-4) (2010).
DOI: 10.1016/j.hydromet.2010.03.024
Google Scholar
[22]
R. M. Ruan, X. Y. Liu, G. Zou, J. H. Chen, J. K. Wen, D. Z. Wang, Industrial practice of a distinct bioleaching system operated at low pH, high ferric concentration, elevated temperature and low redox potential for secondary copper sulfide, Hydrometallurgy. 108(1-2) (2011).
DOI: 10.1016/j.hydromet.2011.03.008
Google Scholar
[23]
G. Zou, R. M. Ruan, X. Y. Liu, Z. L.Wu, Microbial community structure and redox potential in a copper sulphide bioleaching system with low pH, high ferric concentration and elevated temperature, In: G. Z. Qiu, T. Jiang, W.Q. Qin et al (eds) Biohydrometallurgy: Biotech key to unlock mineral resources value, Proceedings of 19th International Biohydrometallurgy Symposium. Central South University Press, China, 2011, p.994-(2001).
DOI: 10.1016/j.hydromet.2011.03.008
Google Scholar
[24]
R. B. Hawkes, P. D. Franzmann, J. J. Plumb, Moderate thermophiles including Ferroplasma cupricumulans, sp. nov. dominate an industrial-scale chalcocite heap bioleaching operation, Hydrometallurgy. 83(1-4) (2006) 229-236.
DOI: 10.1016/j.hydromet.2006.03.027
Google Scholar
[25]
T. Rohwerder, Gehrke T, Kinzler K, Sand W. Bioleaching review part A: Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation, Appl. Microbiol. Biotechnol. 63 (2003) 239-248.
DOI: 10.1007/s00253-003-1448-7
Google Scholar
[26]
D. E. Rawlings, Characteristics and adaptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates, Microbial Cell Factories. 4(1) (2005) 1-15.
DOI: 10.1186/1475-2859-4-13
Google Scholar
[27]
Z. L. Wu, Z. S. Huang, R. M. Ruan, S. P. Zhong, B. K. C. Chan, Effect of temperature on column bioleaching of a refractory gold ore, Advanced Materials Research.825 (2013) 352-355.
DOI: 10.4028/www.scientific.net/amr.825.352
Google Scholar
[28]
C. A. Jones, B. D. Kelly,Growth of Thiobacillus ferrooxidans on ferrous iron in chemostat culture: influence of product and substrate inhibition, J. Chem. Technol. Biotechnol. 33B (4) (1983) 241-261.
DOI: 10.1002/jctb.280330407
Google Scholar
[29]
H. M. Lizama, I. Suzuki, Synergistic comperitive inhibition of ferrous iron oxidation by Thiobacillus ferrooxidans by increasing concentrations of ferric iron and cells, Appl. Environ. Microbiol. 32 (1989) 2588-2591.
DOI: 10.1128/aem.55.10.2588-2591.1989
Google Scholar
[30]
P. Jochen, V. O. Tunde, The effect of total iron concentration and iron speciation on the rate of ferrous iron oxidation kinetics of Leptospirillum ferriphilum in continuous tank systems, Advanced Materials Research. 20-21 (2007) 447-451.
DOI: 10.4028/www.scientific.net/amr.20-21.447
Google Scholar
[31]
T. V. Ojumu, J. Petersen, G. S. Hansford, The effect of dissolved cations on microbial ferrous-iron oxidation by Leptospirillum ferriphilum in continuous culture, Hydrometallurgy. 94(1-4) (2008) 69-76.
DOI: 10.1016/j.hydromet.2008.05.047
Google Scholar
[32]
V. O. Tunde, P. Jochen, S. H. Geoffrey, The effect of aluminium and magnesium sulphate on the rate of ferrous iron oxidation by Leptospirillum ferriphilum in continuous culture, Advanced Materials Research. 21-22 (2007) 156-159.
DOI: 10.4028/www.scientific.net/amr.20-21.156
Google Scholar
[33]
T. Cabral, I. Ignatiadis, Mechanistic study of the pyrite-solution interface during the oxidative bacterial dissolution of pyrite (FeS2) by using electrochemical techniques, In: Proceedings of the International Biohydrometallurgy Symposium. Elsevier, Amsterdam, 1999, pp.357-366.
DOI: 10.1016/s1572-4409(99)80036-4
Google Scholar
[34]
P. R. Holmes, F. K. Crundwell, The kinetics of the oxidation of pyrite by ferric ions and dissolved oxygen: An electrochemical study, Geochim. Cosmochim. Acta. 64 (2000) 263-274.
DOI: 10.1016/s0016-7037(99)00296-3
Google Scholar
[35]
S. C. Bouffard, B. F. Rivera-Vasquez, D. G. Dixon, Leaching kinetics and stoichiometry of pyrite oxidation from a pyrite-marcasite concentrate in acid ferric sulfate media, Hydrometallurgy. 84(3-4) (2006) 225-238.
DOI: 10.1016/j.hydromet.2006.05.008
Google Scholar
[36]
O. H. Tuovinen, T. M. Bhatti, J. M. Bigham, K. B. Hallberg, G. J. Oswaldo, E. B. Lindsrom, Oxidative dissolution of arsenopyrite by mesophilic and moderately thermophilic acidophilest, Appl. Environ. Microbiol. 60(9) (1994) 3268-3274.
DOI: 10.1128/aem.60.9.3268-3274.1994
Google Scholar
[37]
B. Wu, J. K. Wen, B. W. Chen, G. C. Yao, D. Z. Wang, Control of redox potential by oxygen limitation in selective bioleaching of chalcocite and pyrite, Rare Metals. 33(5) (2014) 622-627.
DOI: 10.1007/s12598-014-0364-6
Google Scholar
[38]
J. Yu, H. Y. Yang, L. L. Tong, J. Zhu, Intensified bioleaching of low-grade molybdenite concentrate by ferrous sulfate and pyrite, Rare Metals. 34(3) (2015) 207-214.
DOI: 10.1007/s12598-014-0437-6
Google Scholar
[39]
M. Descostes, P. Vitorge, C. Beaucaire, Pyrite dissolution in acidic media, Geochim. Cosmochim. Acta. 68 (2004) 4559-4569.
DOI: 10.1016/j.gca.2004.04.012
Google Scholar
[40]
N. Okibe, D. B. Johnson, Biooxidation of pyrite by defined mixed cultures of moderately thermophilic acidophiles in pH-controlled bioreactors: significance of microbial interactions, Biotechnol Bioeng. 87(5) (2004) 574-583.
DOI: 10.1002/bit.20138
Google Scholar
[41]
C. S. Demergasso, P. Galleguillos, G. Escudero, A. Zepeda, D. Castillo, E. O. Casamayor, Molecular charatrizationof microbial populations in a low-grade copper ore bioleaching test heap, Hydrometallurgy. 80 (2005) 241-253.
DOI: 10.1016/j.hydromet.2005.07.013
Google Scholar
[42]
T. C. Logan, T. Seal, J. A. Brierley, Whole-ore heap biooxidation of sulfidic gold-bearing ores, In: D. E. Rawlings, D. B. Johnson (eds) Biomining. Springer, German, 2007, pp.113-137.
DOI: 10.1007/978-3-540-34911-2_6
Google Scholar