[1]
C. Veiga, J.P. Davim, A.J.R. Loureiro, Properties and applications of titanium alloys: a brief review, Rev. Adv. Mater. Sci. 32 (2012) 133-148.
Google Scholar
[2]
Hiroaki Matsumoto, Hiroshi Yoneda, Kazuhisa Sato, Shingo Kurosu, Eric Maire, Damien Fabregue, Toyohiko J. Konno, Akihiko Chiba, Room-temperature ductility of Ti-6Al-4V alloy with α'martensite microstructure, Mater. Sci. Eng. A. 528 (2011).
DOI: 10.1016/j.msea.2010.10.070
Google Scholar
[3]
Qi Chao, Peter D. Hodgson, Hossein Beladi, Ultrafine grain formation in a Ti-6Al-4V alloy by thermomechanical processing of a martensitic microstructure, Metall. Mater. Trans. A. 45 (2014) 2059-2671.
DOI: 10.1007/s11661-014-2205-5
Google Scholar
[4]
Yun Bai, Xin Gai, Shujun Li, Lai-Chang Zhang, Yujing Liu, Yulin Hao, Xing Zhang, Rui Yang, Yongbo Gao, Improved corrosion behaviour of electron beam melted Ti-6Al–4V alloy in phosphate buffered saline, Corros. Sci. 123 (2017) 289-296.
DOI: 10.1016/j.corsci.2017.05.003
Google Scholar
[5]
Qi Chao, Pavel Cizek, Jiangting Wang, Peter D. Hodgson, Hossein Beladi, Enhanced mechanical response of an ultrafine grained Ti-6Al-4V alloy produced through warm symmetric and asymmetric rolling, Mater. Sci. Eng. A. 650 (2016) 404-413.
DOI: 10.1016/j.msea.2015.10.061
Google Scholar
[6]
F. Coghe, W. Tirry, L. Rabet, D. Schryvers, P. Van Houtte, Importance of twinning in static and dynmic compression of a Ti-6Al-4V titanium alloy with an equiaxed microstructure, Mater. Sci. Eng. A. 537 (2012) 1-10.
DOI: 10.1016/j.msea.2011.12.047
Google Scholar
[7]
Toshikazu Akahori, Mitsuo Niinomi, Kei-Ichi Fukunaga, Ikuhiro Inagaki, Effects of Microstructure on the Short Fatigue Crack Initiation and Propagation Characteristics of Biomedical α/β Titanium Alloys, Metall. Mater. Trans. A. 31 (2000).
DOI: 10.1007/s11661-000-0222-z
Google Scholar
[8]
X.P. Jiang, C.-S. Man, M.J. Shepard, T. Zhai, Effects of shot-peening and re-shot-peening on four-point bend fatigue behavior of Ti-6Al-4V, Mater. Sci. Eng. A. 468-470 (2007) 137-143.
DOI: 10.1016/j.msea.2007.01.156
Google Scholar
[9]
C. Mapelli, A. Manes, M. Giglio, D. Mombelli, L. Giudici, C. Baldizzone, A. Gruttadauria, Survey about effects of shot peening conditions on fatigue performances of Ti-6Al-4V mechanical specimens featured by different cross-section geometries, Mater. Sci. Technol. 28 (2012).
DOI: 10.1179/1743284711y.0000000096
Google Scholar
[10]
Lechun Xie, Jiong Zhang, Cenbo Xiong, Lihong Wu, Chuanhai Jiang, Weijie Lu, Investigation on experiments and numerical modelling of the residual stress distribution in deformed surface layer of Ti-6Al-4V after shot peening, Mater. Des. 41 (2012).
DOI: 10.1016/j.matdes.2012.05.024
Google Scholar
[11]
Steven J. Laine, Kevin M. Knowles, Phillip J. Doorbar, Richard D. Cutts, David Rugg, Microstructural characterization of metallic shot peened and laser shock peened Ti-6Al-4V, Acta Mater. 123 (2017) 350-361.
DOI: 10.1016/j.actamat.2016.10.044
Google Scholar
[12]
Viktor Hauk, Structural and Residual Stress Analysis by Nondestructive Methods, Elsevier Science B.V., Amsterdam, (1997).
Google Scholar
[13]
J. I. Langford, A Rapid Method for Analysing the Breadths of Diffraction and Spectral Lines using the Voigt Function, J. Appl. Cryst. 11 (1978) 10-14.
DOI: 10.1107/s0021889878012601
Google Scholar
[14]
Yaomian Wang, Huanping Yang, Conghui Zhang, Fei Yu, Analysis of the Residual Stress in Zirconium Subjected to Surface Severe Plastic Deformation, Met. Mater. Int. 21 (2015) 260-269.
DOI: 10.1007/s12540-015-4195-2
Google Scholar