Effect of Compressive Stress on the High-Temperature Oxidation Behavior of a Fe-20Ni Alloy in Air

Article Preview

Abstract:

The oxidation behavior of Fe-20Ni alloy under compressive stress in air was studied at 800, 900 °C. The results examined by using scanning electron microscope (SEM) and X-ray diffraction (XRD) indicates that the oxide scales were consisted of an external scale and a subscale which has an intragranular scale (above 5 h at 800 °C and 900 °C) and an intergranular scale. Compared with the unstressed specimen, the growth kinetics of external scale was accelerated by an applied compressive stress. Besides, the compressive stress induced an increase in the growths of intragranular scale and intergranular scale formed on the specimens oxidized at 900 °C. However, the effect of compressive stress on the growth of intergranular scale and intragranular scale was not obvious in the case of 800°C. In addition, cracks developed in the subscale for the specimens oxidized under 2.5 MPa compressive stress when the oxidation time exceeded 20 h.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

168-176

Citation:

Online since:

May 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. T. Foley, Oxidation of Iron‐Nickel Alloys VI . A Survey of Kinetics and Mechanism, J. Electrochem. Soc. 109(1962)1202-1206.

Google Scholar

[2] A. D. Dalvi and W. W. Smeltzer, Thermodynamics of the Iron‐Nickel‐Oxygen System at 1000°C, J. Electrochem. Soc. 117(1970) 1431-1436.

DOI: 10.1149/1.2407337

Google Scholar

[3] W. J. Tomlinson and I. A. Menzies, Oxidation of an Fe-19 wt. % Ni alloy in CO2 at 700–1000°C, Oxid. Met. 12(1978)215-225.

DOI: 10.1007/bf00616097

Google Scholar

[4] W. J. Tomlinson and I. A. Menzies, Oxidation of an Fe-9 w/o Ni Alloy in  CO2 at 700°–1000°C, J. Electrochem. Soc. 125(1978)279-284.

DOI: 10.1149/1.2131428

Google Scholar

[5] K. Kusabiraki, J. Ikegami, T. Nishimoto, and T. Ooka, Oxidation behavior of an Fe-38Ni-13Co-4.7Nb-1.5Ti-0.4Si superalloy at high temperature in Ar-H2O atmospheres, Oxid. Met. 47(1997)411-426.

DOI: 10.1007/bf02134784

Google Scholar

[6] C. H. Zhou, H. T. Ma, L. Wang, Effect of Mechanical Loading on the Oxidation Kinetics and Oxide-Scale Failure of Pure Ni, Oxid. Met. 70(2008)287-294.

DOI: 10.1007/s11085-008-9121-2

Google Scholar

[7] R. Rolls and M. H. Shahhosseini, Effect of creep on the oxidation characteristics of Fe-Si alloys at 973–1073 K, Oxid. Met. 18(1982) 115-126.

DOI: 10.1007/bf00662033

Google Scholar

[8] G. Calvarin-Amiri, R. Molins, A. M. Huntz, Effect of the Application of a Mechanical Load on the Oxide-Layer Microstructure and on the Oxidation Mechanism of Ni–20Cr Foils, Oxid. Met. 54(2000)399-426.

DOI: 10.4028/www.scientific.net/msf.369-372.467

Google Scholar

[9] M. M. Nagl, W. T. Evans, The mechanical failure of oxide scales under tensile or compressive load, J. Mater. Sci. 28(1993) 6247-6260.

DOI: 10.1007/bf01352181

Google Scholar

[10] M. Schütze, The healing behavior of protective oxide scales on heat-resistant steels after cracking under tensile strain, Oxid. Met. 25(1986)409-421.

DOI: 10.1007/bf01072918

Google Scholar

[11] K. Kusabiraki, H. Tsujino and S. Saji, Effects of Tensile Stress on the High-temperature Oxidation of an Fe–38Ni–13Co–4.7Nb–1.5Ti–0.4Si Superalloy in Air, ISIJ International 38(1998)1015-1021.

DOI: 10.2355/isijinternational.38.1015

Google Scholar

[12] X. Guo, K. Kusabiraki and S. Saji, High-Temperature Scale Formation of Fe–36% Ni Bicrystals in Air, Oxid. Met. 58(2002)589-605.

Google Scholar

[13] D. L. Douglass, P. Kofstad, A. Rahmel, and G. C. Wood, International Workshop on High-Temperature Corrosion, Oxid. Met. 45(1996)529-620.

DOI: 10.1007/bf01046850

Google Scholar

[14] I. A. Menzies and J. Lubkiewicz, Oxidation of an Fe-12% Ni alloy in oxygen at 700–1000°C, Oxid. Met. 3(1971)41-58.

DOI: 10.1007/bf00604739

Google Scholar

[15] Neil Birks, Gerald H. Meier, and Frederick S. Pettit, Introduction to the High-Temperature Oxidation of Metals, UK, Cambridge, (2006).

Google Scholar

[16] J. C. Grosskreutz and M. B. McNEIL, The Fracture of Surface Coatings on a Strained Substrate, J. Appl. Phy. 40(1969)355-359.

DOI: 10.1063/1.1657059

Google Scholar

[17] R. Y. Chen, W. Y. D. Yuen, A Study of the Scale Structure of Hot-Rolled Steel Strip by Simulated Coiling and Cooling, Oxid. Met. 53(2000)539-560.

Google Scholar

[18] Y. Ikeda and K. Nii, Microcrack, Microcrack generation and its healing in the oxide scale formed on Fe-Cr alloys, Oxid. Met. 12(1978)487-502.

DOI: 10.1007/bf00603806

Google Scholar

[19] W. Christl, A. Rahmel and M. Schütze, Behavior of oxide scales on 2.25Cr-1Mo steel during thermal cycling. II. Scales grown in water vapor, Oxid. Met. 31(1989)35-69.

DOI: 10.1007/bf00665486

Google Scholar