[1]
R. T. Foley, Oxidation of Iron‐Nickel Alloys VI . A Survey of Kinetics and Mechanism, J. Electrochem. Soc. 109(1962)1202-1206.
Google Scholar
[2]
A. D. Dalvi and W. W. Smeltzer, Thermodynamics of the Iron‐Nickel‐Oxygen System at 1000°C, J. Electrochem. Soc. 117(1970) 1431-1436.
DOI: 10.1149/1.2407337
Google Scholar
[3]
W. J. Tomlinson and I. A. Menzies, Oxidation of an Fe-19 wt. % Ni alloy in CO2 at 700–1000°C, Oxid. Met. 12(1978)215-225.
DOI: 10.1007/bf00616097
Google Scholar
[4]
W. J. Tomlinson and I. A. Menzies, Oxidation of an Fe-9 w/o Ni Alloy in CO2 at 700°–1000°C, J. Electrochem. Soc. 125(1978)279-284.
DOI: 10.1149/1.2131428
Google Scholar
[5]
K. Kusabiraki, J. Ikegami, T. Nishimoto, and T. Ooka, Oxidation behavior of an Fe-38Ni-13Co-4.7Nb-1.5Ti-0.4Si superalloy at high temperature in Ar-H2O atmospheres, Oxid. Met. 47(1997)411-426.
DOI: 10.1007/bf02134784
Google Scholar
[6]
C. H. Zhou, H. T. Ma, L. Wang, Effect of Mechanical Loading on the Oxidation Kinetics and Oxide-Scale Failure of Pure Ni, Oxid. Met. 70(2008)287-294.
DOI: 10.1007/s11085-008-9121-2
Google Scholar
[7]
R. Rolls and M. H. Shahhosseini, Effect of creep on the oxidation characteristics of Fe-Si alloys at 973–1073 K, Oxid. Met. 18(1982) 115-126.
DOI: 10.1007/bf00662033
Google Scholar
[8]
G. Calvarin-Amiri, R. Molins, A. M. Huntz, Effect of the Application of a Mechanical Load on the Oxide-Layer Microstructure and on the Oxidation Mechanism of Ni–20Cr Foils, Oxid. Met. 54(2000)399-426.
DOI: 10.4028/www.scientific.net/msf.369-372.467
Google Scholar
[9]
M. M. Nagl, W. T. Evans, The mechanical failure of oxide scales under tensile or compressive load, J. Mater. Sci. 28(1993) 6247-6260.
DOI: 10.1007/bf01352181
Google Scholar
[10]
M. Schütze, The healing behavior of protective oxide scales on heat-resistant steels after cracking under tensile strain, Oxid. Met. 25(1986)409-421.
DOI: 10.1007/bf01072918
Google Scholar
[11]
K. Kusabiraki, H. Tsujino and S. Saji, Effects of Tensile Stress on the High-temperature Oxidation of an Fe–38Ni–13Co–4.7Nb–1.5Ti–0.4Si Superalloy in Air, ISIJ International 38(1998)1015-1021.
DOI: 10.2355/isijinternational.38.1015
Google Scholar
[12]
X. Guo, K. Kusabiraki and S. Saji, High-Temperature Scale Formation of Fe–36% Ni Bicrystals in Air, Oxid. Met. 58(2002)589-605.
Google Scholar
[13]
D. L. Douglass, P. Kofstad, A. Rahmel, and G. C. Wood, International Workshop on High-Temperature Corrosion, Oxid. Met. 45(1996)529-620.
DOI: 10.1007/bf01046850
Google Scholar
[14]
I. A. Menzies and J. Lubkiewicz, Oxidation of an Fe-12% Ni alloy in oxygen at 700–1000°C, Oxid. Met. 3(1971)41-58.
DOI: 10.1007/bf00604739
Google Scholar
[15]
Neil Birks, Gerald H. Meier, and Frederick S. Pettit, Introduction to the High-Temperature Oxidation of Metals, UK, Cambridge, (2006).
Google Scholar
[16]
J. C. Grosskreutz and M. B. McNEIL, The Fracture of Surface Coatings on a Strained Substrate, J. Appl. Phy. 40(1969)355-359.
DOI: 10.1063/1.1657059
Google Scholar
[17]
R. Y. Chen, W. Y. D. Yuen, A Study of the Scale Structure of Hot-Rolled Steel Strip by Simulated Coiling and Cooling, Oxid. Met. 53(2000)539-560.
Google Scholar
[18]
Y. Ikeda and K. Nii, Microcrack, Microcrack generation and its healing in the oxide scale formed on Fe-Cr alloys, Oxid. Met. 12(1978)487-502.
DOI: 10.1007/bf00603806
Google Scholar
[19]
W. Christl, A. Rahmel and M. Schütze, Behavior of oxide scales on 2.25Cr-1Mo steel during thermal cycling. II. Scales grown in water vapor, Oxid. Met. 31(1989)35-69.
DOI: 10.1007/bf00665486
Google Scholar