Effects of Precipitation of Al3Zr Particles on Microstructures and Properties of the Al-3.55Cu-1.51Li-0.11Zr Alloy

Article Preview

Abstract:

Under single-step and double-step homogenization conditions, the precipitation behavior of Al3Zr dispersoids and its effects on the microstructures and tensile properties of an Al-3.5Cu-1.5Li-0.11Zr alloy were investigated in the current study. It was found that a double-stage homogenization (460 °C/16 h, 520 °C/24 h) enhanced the uniformity of the Al3Zr dispersoids distribution compared with the single-stage homogenized samples. Al3Zr particles which are coherent with the matrix would inhibit the movement of dislocation induced by stress and also the migration of sub-grain boundary and grain boundary induced by thermal activation. The finer particle size and distribution more diffuse of Al3Zr particles reduced recrystallization during hot rolling and solution heat treatment, improving the tensile properties of the as-aged sample.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

214-221

Citation:

Online since:

May 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Zhang S F, Zeng W D, Yang W H, et al. Ageing response of a Al–Cu–Li 2198 alloy[J]. Materials & Design, 2014, 63(2):368-374.

DOI: 10.1016/j.matdes.2014.04.063

Google Scholar

[2] Yoshimura R, Konno T J, Abe E, et al. Transmission electron microscopy study of the evolution of precipitates in aged Al–Li–Cu alloys: the θ' and T1 phases[J]. Acta Materialia, 2003, 51(14): 4251 - 4266.

DOI: 10.1016/s1359-6454(03)00253-2

Google Scholar

[3] Rioja R J, Liu J. The Evolution of Al-Li Base Products for Aerospace and Space Applications[J]. Metallurgical & Materials Transactions A. 2012, 43(9): 3325-3337.

DOI: 10.1007/s11661-012-1155-z

Google Scholar

[4] Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys[J]. Materials & Design. 2014, 56(4): 862-871.

DOI: 10.1016/j.matdes.2013.12.002

Google Scholar

[5] Yang S, Shen J, Yan X, X Li, F Zhang. Homogenization Treatment Parameter Optimization and Microstructural Evolution of Al-Cu-Li Alloy[J]. Rare Metal Materials & Engineering. 2017,46(1) 28-34.

DOI: 10.1016/s1875-5372(17)30072-3

Google Scholar

[6] Decreus B, Deschamps A, Geuser F D, Donnadieu P, Sigli C, Weyland M. The influence of Cu/Li ratio on precipitation in Al-Cu-Li-x alloys[J]. Acta Materialia. 2013, 61(6): 2207-2218.

DOI: 10.1016/j.actamat.2012.12.041

Google Scholar

[7] Jin-Feng LI, Liu P L, Chen Y L, XH Zhang, ZQ Zheng. Microstructure and mechanical properties of Mg, Ag and Zn multi-microalloyed Al-(3.2-3.8)Cu-(1.0-1.4)Li alloys[J]. Transactions of Nonferrous Metals Society of China. 2015, 25(7): 2103-2112.

DOI: 10.1016/s1003-6326(15)63821-3

Google Scholar

[8] Araullo-Peters V, Gault B, Geuser F D, et al. Microstructural evolution during ageing of Al–Cu–Li–x alloys[J]. Acta Materialia. 2014, 66(1): 199-208.

DOI: 10.1016/j.actamat.2013.12.001

Google Scholar

[9] Gumbmann E, Lefebvre W, Geuser F D, et al. The effect of minor solute additions on the precipitation path of an Al-Cu-Li alloy[J]. Acta Materialia. 2016, 115: 104-114.

DOI: 10.1016/j.actamat.2016.05.050

Google Scholar

[10] Tsivoulas D, Robson J D, Sigli C, et al. Interactions between zirconium and manganese dispersoid-forming elements on their combined addition in Al–Cu–Li alloys[J]. Acta Materialia. 2012, 60(13-14): 5245-5259.

DOI: 10.1016/j.actamat.2012.06.012

Google Scholar

[11] Tsivoulas D, Prangnell P B. The effect of Mn and Zr dispersoid-forming additions on recrystallization resistance in Al-Cu-Li AA2198 sheet[J]. Acta Materialia. 2014, 77(4): 1-16.

DOI: 10.1016/j.actamat.2014.05.028

Google Scholar

[12] Tsivoulas D, Robson J D. Heterogeneous Zr solute segregation and Al 3 Zr dispersoid distributions in Al–Cu–Li alloys[J]. Acta Materialia, 2015, 93:73-86.

DOI: 10.1016/j.actamat.2015.03.057

Google Scholar

[13] Wu H, Wen S P, Huang H, et al. Effects of homogenization on precipitation of Al3(Er,Zr) particles and recrystallization behavior in a new type Al-Zn-Mg-Er-Zr alloy[J]. Materials Science & Engineering A. 2017, 689: 313-322.

DOI: 10.1016/j.msea.2017.02.071

Google Scholar

[14] Priya P, Johnson D R, Krane M J M. Modeling phase transformation kinetics during homogenization of aluminum alloy 7050[J]. Computational Materials Science. 2017, 138(Supplement C): 277-287.

DOI: 10.1016/j.commatsci.2017.06.043

Google Scholar

[15] Dorin T, Deschamps A, Geuser F D, et al. Impact of grain microstructure on the heterogeneity of precipitation strengthening in an Al–Li–Cu alloy[J]. Materials Science & Engineering A, 2015, 627:51-55.

DOI: 10.1016/j.msea.2014.12.073

Google Scholar

[16] Nayan N, Murty S V S N, Chhangani S, et al. Effect of temperature and strain rate on hot deformation behavior and microstructure of Al-Cu-Li alloy[J]. Journal of Alloys & Compounds, 2017, 723.

DOI: 10.1016/j.jallcom.2017.06.165

Google Scholar

[17] Ovri H, Jägle E A, Stark A, et al. Microstructural influences on strengthening in a naturally aged and overaged Al–Cu–Li–Mg based alloy[J]. Materials Science & Engineering A, 2015, 637:162-169.

DOI: 10.1016/j.msea.2015.04.039

Google Scholar

[18] Hekmat-Ardakan A, Elgallad E M, Ajersch F, et al. Microstructural evolution and mechanical properties of as-cast and T6-treated AA2195 DC cast alloy[J]. Materials Science & Engineering A, 2012, 558(12):76-81.

DOI: 10.1016/j.msea.2012.07.075

Google Scholar

[19] Li H, Hu Y, Ling J, et al. Effect of Double Aging on the Toughness and Precipitation Behavior of a Novel Aluminum-Lithium Alloy[J]. Journal of Materials Engineering & Performance, 2015, 24(10):3912-3918.

DOI: 10.1007/s11665-015-1674-z

Google Scholar