[1]
Zhang S F, Zeng W D, Yang W H, et al. Ageing response of a Al–Cu–Li 2198 alloy[J]. Materials & Design, 2014, 63(2):368-374.
DOI: 10.1016/j.matdes.2014.04.063
Google Scholar
[2]
Yoshimura R, Konno T J, Abe E, et al. Transmission electron microscopy study of the evolution of precipitates in aged Al–Li–Cu alloys: the θ' and T1 phases[J]. Acta Materialia, 2003, 51(14): 4251 - 4266.
DOI: 10.1016/s1359-6454(03)00253-2
Google Scholar
[3]
Rioja R J, Liu J. The Evolution of Al-Li Base Products for Aerospace and Space Applications[J]. Metallurgical & Materials Transactions A. 2012, 43(9): 3325-3337.
DOI: 10.1007/s11661-012-1155-z
Google Scholar
[4]
Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys[J]. Materials & Design. 2014, 56(4): 862-871.
DOI: 10.1016/j.matdes.2013.12.002
Google Scholar
[5]
Yang S, Shen J, Yan X, X Li, F Zhang. Homogenization Treatment Parameter Optimization and Microstructural Evolution of Al-Cu-Li Alloy[J]. Rare Metal Materials & Engineering. 2017,46(1) 28-34.
DOI: 10.1016/s1875-5372(17)30072-3
Google Scholar
[6]
Decreus B, Deschamps A, Geuser F D, Donnadieu P, Sigli C, Weyland M. The influence of Cu/Li ratio on precipitation in Al-Cu-Li-x alloys[J]. Acta Materialia. 2013, 61(6): 2207-2218.
DOI: 10.1016/j.actamat.2012.12.041
Google Scholar
[7]
Jin-Feng LI, Liu P L, Chen Y L, XH Zhang, ZQ Zheng. Microstructure and mechanical properties of Mg, Ag and Zn multi-microalloyed Al-(3.2-3.8)Cu-(1.0-1.4)Li alloys[J]. Transactions of Nonferrous Metals Society of China. 2015, 25(7): 2103-2112.
DOI: 10.1016/s1003-6326(15)63821-3
Google Scholar
[8]
Araullo-Peters V, Gault B, Geuser F D, et al. Microstructural evolution during ageing of Al–Cu–Li–x alloys[J]. Acta Materialia. 2014, 66(1): 199-208.
DOI: 10.1016/j.actamat.2013.12.001
Google Scholar
[9]
Gumbmann E, Lefebvre W, Geuser F D, et al. The effect of minor solute additions on the precipitation path of an Al-Cu-Li alloy[J]. Acta Materialia. 2016, 115: 104-114.
DOI: 10.1016/j.actamat.2016.05.050
Google Scholar
[10]
Tsivoulas D, Robson J D, Sigli C, et al. Interactions between zirconium and manganese dispersoid-forming elements on their combined addition in Al–Cu–Li alloys[J]. Acta Materialia. 2012, 60(13-14): 5245-5259.
DOI: 10.1016/j.actamat.2012.06.012
Google Scholar
[11]
Tsivoulas D, Prangnell P B. The effect of Mn and Zr dispersoid-forming additions on recrystallization resistance in Al-Cu-Li AA2198 sheet[J]. Acta Materialia. 2014, 77(4): 1-16.
DOI: 10.1016/j.actamat.2014.05.028
Google Scholar
[12]
Tsivoulas D, Robson J D. Heterogeneous Zr solute segregation and Al 3 Zr dispersoid distributions in Al–Cu–Li alloys[J]. Acta Materialia, 2015, 93:73-86.
DOI: 10.1016/j.actamat.2015.03.057
Google Scholar
[13]
Wu H, Wen S P, Huang H, et al. Effects of homogenization on precipitation of Al3(Er,Zr) particles and recrystallization behavior in a new type Al-Zn-Mg-Er-Zr alloy[J]. Materials Science & Engineering A. 2017, 689: 313-322.
DOI: 10.1016/j.msea.2017.02.071
Google Scholar
[14]
Priya P, Johnson D R, Krane M J M. Modeling phase transformation kinetics during homogenization of aluminum alloy 7050[J]. Computational Materials Science. 2017, 138(Supplement C): 277-287.
DOI: 10.1016/j.commatsci.2017.06.043
Google Scholar
[15]
Dorin T, Deschamps A, Geuser F D, et al. Impact of grain microstructure on the heterogeneity of precipitation strengthening in an Al–Li–Cu alloy[J]. Materials Science & Engineering A, 2015, 627:51-55.
DOI: 10.1016/j.msea.2014.12.073
Google Scholar
[16]
Nayan N, Murty S V S N, Chhangani S, et al. Effect of temperature and strain rate on hot deformation behavior and microstructure of Al-Cu-Li alloy[J]. Journal of Alloys & Compounds, 2017, 723.
DOI: 10.1016/j.jallcom.2017.06.165
Google Scholar
[17]
Ovri H, Jägle E A, Stark A, et al. Microstructural influences on strengthening in a naturally aged and overaged Al–Cu–Li–Mg based alloy[J]. Materials Science & Engineering A, 2015, 637:162-169.
DOI: 10.1016/j.msea.2015.04.039
Google Scholar
[18]
Hekmat-Ardakan A, Elgallad E M, Ajersch F, et al. Microstructural evolution and mechanical properties of as-cast and T6-treated AA2195 DC cast alloy[J]. Materials Science & Engineering A, 2012, 558(12):76-81.
DOI: 10.1016/j.msea.2012.07.075
Google Scholar
[19]
Li H, Hu Y, Ling J, et al. Effect of Double Aging on the Toughness and Precipitation Behavior of a Novel Aluminum-Lithium Alloy[J]. Journal of Materials Engineering & Performance, 2015, 24(10):3912-3918.
DOI: 10.1007/s11665-015-1674-z
Google Scholar