Research on Effects of Rolling-Drawing Deformation on Performance of Cu-10Ni-1Fe-1Mn Alloy

Article Preview

Abstract:

Evolution laws of structure and performance of Cu-10Ni-1Fe-1Mn alloy in the process of continuous casting-planetary rolling-drawing deformation were studied by OM, SEM, TEM, Brinell Hardness tester and universal material testing machine. Results demonstrated that the alloy ingot is composed of thick dendrites. The ingot makes grain crushing and dynamic recrystallization after planetary rolling. The hot rolling samples still have abundant fine recrystallization textures after multi-pass drawings. Due to roller-core head or internal-external mold opposite pressure, dislocations in different regions of sample move along the glide plane, forming a macroscopic slip band. Two adjacent macroscopic slip zones which move toward opposite directions compose the folded structures after the deformation. Refined crystalline strengthening, solution strengthening of Fe, Ni and Mn, work hardening, and iron-containing particle precipitation are major causes of alloy strengthening. SEM analysis of tensile fracture demonstrated that the material still maintained good plasticity after rolling and drawing deformation. However, material plasticity declined with the increase of cold processing-induced deformation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

236-245

Citation:

Online since:

May 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Li B, Zhang S H, Zhang G L, Zhang H Q. Prediction of 3-D temperature field of TP2 copper tubes in three-roll planetary rolling process[J]. journal of materials processing technology, 2008, 205(1): 370-375.

DOI: 10.1016/j.jmatprotec.2007.11.213

Google Scholar

[2] LI B, Zhang S H, Zhang G L, Zhang H Y , Zhang H Q. Microstructure simulation of copper tube and its application in three roll planetary rolling[J]. Materials science and technology, 2007, 23(6): 715-722.

DOI: 10.1179/174328407x185848

Google Scholar

[3] Zhang J H. The application of casting-rolling procedure in technology for processing copper coll tube[J]. Hunan Metallurgy, 2004, 5: 39-41.

Google Scholar

[4] Deng C, Huang B, Su Y C, Liu D H. Study on the psw cast-roll proccess in the producation of the acr copper tubes[J]. Hunan Metallurgy, 2006, 5: 3-6.

Google Scholar

[5] Wang J, Yun X, Li B,Fan Z X. Microstructure evolution of copper during continuous extrusion process[J]. Nonferrous Metals (Extractive Metallurgy), 2011, 5: 38-41.

Google Scholar

[6] K H Song, H J Lee, W Y Kim. Enhanced Mechanical Properties and Formability of Cross-Roll Rolled Ni–10Cr Alloy[J]. Materials Transactions, 2012, 53(5): 1011-1016.

DOI: 10.2320/matertrans.m2011392

Google Scholar

[7] Ding Y T, Liu B, Guo T.B, Hu Y, Li H.L, Zhao J.Y. Dislocation density variation and mechanical properties of pure copper via equal channel angular pressing[J],Chinese Journal of nonferrous metals,2014,24(08):2057-(2064).

Google Scholar

[8] Lu L.P, Yun X B, Yang J.Y, Song B.Y. Study on Deforming Behavior of Copper-Magnesium Alloy Wire in Extending Continuous-extrusion Process[J]. Hot Working Technology, 2010, 39:92-95.

Google Scholar

[9] Chapman V, Welch B J, Skyllas-Kazacos M. High temperature oxidation behaviour of Ni–Fe–Co anodes for aluminium electrolysis[J]. Corrosion Science, 2011, 53(9): 2815-2825.

DOI: 10.1016/j.corsci.2011.05.018

Google Scholar

[10] Zeng H.N, He Y.D, Xing S.Y, Li Z.J, Liu X.Y, He M.G. Kinetics of Melting Loss and Evaporation Process of Cu-Zn Alloy[J],CHINESE JOURNAL OF RARE METALS, 201741(03):267-275.

Google Scholar

[11] Ouvarov-Bancalero V, Guay D, Roué L. Mechanically alloyed Cu-Ni-Fe-Y material as inert anode for Al production[M]//Light Metals 2013. Springer, Cham, 2016: 1277-1281.

DOI: 10.1002/9781118663189.ch215

Google Scholar

[12] He Y D, Zhang X M, You J H. Effect of minor Sc and Zr on microstructure and mechanical properties of Al-Zn-Mg-Cu alloy[J]. Transactions of Nonferrous Metals Society of China, 2006, (05): 1228-1235.

DOI: 10.1016/s1003-6326(06)60406-8

Google Scholar

[13] Taher A M, Jarjoura G, Kipouros G J. Effect of iron as alloying element on electrochemical behaviour of 90: 10 Cu–Ni alloy[J]. Canadian Metallurgical Quarterly, 2011, 50(4): 425-438.

DOI: 10.1179/000844311x13117643274758

Google Scholar

[14] Zhang C.W, He Y.D, Chen C, Xing S Y, Zeng H N, Liu X Y, He M G, Li Z J. Study on Effect of Melting Protection of Different Covering Agent in Pure Copper Melting Process[J].FOUNDRY TECHNOLOGY,2017,38(01):122-127.

Google Scholar

[15] Xing S Y, He Y D , Zeng H N, Li Z J, Liu X Y, He M G.Mechanism of Protective Cover and Melting Loss of Copper Melt[J]. CHINESE JOURNAL OF RARE METALS, 2017, 41(06):684-692.

Google Scholar

[16] Donoso E. Kinetic study of the annealing reactions in Cu-Ni-Fe alloys[J]. Revista de Metalurgia, 2014, 50(3): 1-5.

Google Scholar

[17] Heino P, Perondi L, Kaski K, Ristolainen E. Stacking-fault energy of copper from molecular-dynamics simulations[J]. Physical Review B, 1999, 60(21): 14625.

DOI: 10.1103/physrevb.60.14625

Google Scholar

[18] Li Y, Korzhavyi P A. Interactions of point defects with stacking faults in oxygen-free phosphorus-containing copper[J]. Journal of Nuclear Materials, 2015, 462: 160-164.

DOI: 10.1016/j.jnucmat.2015.03.041

Google Scholar

[19] Yun X B, You W, Zhao Y, Li B, Fan Z X. Continuous extrusion and rolling forming velocity of copper strip[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(4): 1108-1113.

DOI: 10.1016/s1003-6326(13)62572-8

Google Scholar

[20] Galkin A, Dyja H, Dubovtsev I, Laber K. Analiza zapasu plastyczności stopów typu Cu-Ni-Fe-Mn odkształcanych w warunkach walcowania na zimno i wielokrotnego ciągnienia rur w ciągarkach bębnowych[J]. Hutnik, Wiadomości Hutnicze, 2011, 78(5): 376-381.

DOI: 10.15199/24.2015.4.5

Google Scholar