[1]
Zhao Y H, Lin Y G, and Cui D W. The local corrosion of Cu-Ni alloy in China's real sea area [J]. Journal of China nonferrous metals, 2005, (11): 140-148.
Google Scholar
[2]
Wang J A, Liu E H, Chen J C, Wang H M, Zhang Z L, and He Y. The influence of alloy components on the formation of Cu-Ni alloy thin strip recrystallization texture[J]. Rare metal materials and engineering, 2016, 45(11): 2975-2980.
Google Scholar
[3]
Zeng H N, He Y D, Xing S Y, Li Z J, Liu X Y, and He M G. Cu-Zn Kinetic study of melting loss and evaporation process of alloy[J]. Rare metal, 2017, 41(03): 267-275.
Google Scholar
[4]
Xing S Y, He Y D, Zeng H N, Li Z J, Liu X Y, and He M G. Study on protection and melting loss mechanism of copper melt cover [J]. Rare metal, 2017, 41(06): 684-692.
Google Scholar
[5]
Zamani E, Liaghat G H. Explosive welding of stainless steel–carbon steel coaxial pipes[J]. Journal of Materials Science, 2012, 47(2): 685-695.
DOI: 10.1007/s10853-011-5841-9
Google Scholar
[6]
Al-Meshari A, Diab M, Al-Enazi S. Investigation: failure of a surface condenser titanium tube[J]. Hydrocarbon Processing, 2011, 90(4): 55-58.
Google Scholar
[7]
Tavares, S. S. M., Scandian, C., Pardal, J. M., Luz, T. S., & Da Silva, F. J. (2010).Failure analysis of duplex stainless steel weld used in flexible pipes in off shore oil production[J]. Engineering Failure Analysis, 2010, 17(6): 1500-1506.
DOI: 10.1016/j.engfailanal.2010.05.012
Google Scholar
[8]
Badawy W A, Ismail K M, Fathi A M. Effect of Ni content on the corrosion behavior of Cu–Ni alloys in neutral chloride solutions[J]. Electrochimica acta, 2005, 50(18): 3603-3608.
DOI: 10.1016/j.electacta.2004.12.030
Google Scholar
[9]
Monteiro W A, Carrió J A G, Da Silveira C R, Vitor E, and Buso S J. Structural and electrical properties of copper-nickel-aluminum alloys obtained by conventional powder metallurgy method[C]. Materials Science Forum. Trans Tech Publications, (2010).
DOI: 10.4028/www.scientific.net/msf.660-661.41
Google Scholar
[10]
Melchers R E. Effect of Water Nutrient Pollution on Long-Term Corrosion of 90:10 Copper Nickel Alloy[J]. Materials, 2015, 8(12): 8047-8058.
DOI: 10.3390/ma8125443
Google Scholar
[11]
Taher A M, Jarjoura G, Kipouros G J. Effect of iron as alloying element on electrochemical behaviour of 90:10 Cu–Ni alloy[J]. Canadian Metallurgical Quarterly, 2011, 50(4): 425-438.
DOI: 10.1179/000844311x13117643274758
Google Scholar
[12]
Liu T J, Chen H P, Zhang W F, and LouW T. B10 A ccelerated corrosion behavior of copper nickel alloy in sea water[J]. Material engineering, 2017,45(05): 31-37.
Google Scholar
[13]
Chaitanya Kumar K, Appa Rao B. Mitigation of microbially influenced corrosion of Cu-Ni (90/10) alloy in a seawater environment[J]. Research on Chemical Intermediates, 2016, 42(6):5807-5823.
DOI: 10.1007/s11164-015-2405-7
Google Scholar
[14]
Zhu Q F, Zhao Z H, Wang X J, and Cui J Z. Effect of Electromagnetic Field on Horizontal Direct Chill Casting of 7075 Aluminum Alloy[C]. Materials Science Forum. Trans Tech Publications, (2010).
DOI: 10.4028/www.scientific.net/msf.654-656.982
Google Scholar
[15]
Li G L, Li X T, Li T J, and Jin J Z. Horizontal electromagnetic continuous casting hollow copper tube billet structure and performance research[J]. Rare metal materials and engineering, 2006, (07): 1126-1128.
Google Scholar