Dielectric Properties of A, B-Site Mn-Doped LaTiO3+δ

Article Preview

Abstract:

A-site Mn-doped La1-xMnxTiO3+δ and B-site doped LaMnxTi1-xO3+δ (x = 0.1, 0.2) composites were synthesized by conventional solid-state reaction method. The low-frequency complex dielectric properties of the composites were investigated as functions of temperature (77 K ≤ T ≤ 360 K) and frequency (100 Hz ≤ f ≤ 1 MHz), respectively. The dielectric constants of A-site doped samples are higher than that of B-site doped samples. The loss tangents of the low doped samples are much less than that of the high doped samples. The A-site doped composites exhibit intrinsic dielectric response with a dielectric constant of ~40 in the temperature below 250 K. Interestingly, the dielectric constants of B-site doped composites always increased in the temperature range from 77 to 360 K. And it is clearly observed that extraordinarily low dielectric loss tangents appear in LaMn0.1Ti0.9O3+δ, which are much lower than that of LaMn0.2Ti0.8O3+δ. These changes indicate that the doped content can affect the intrinsic dielectric characteristics significantly.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

78-84

Citation:

Online since:

May 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ao Y, Wang K. Wang P, et al, RSC Advances 2016; 6(54):48599-48609.

Google Scholar

[2] Zhou Y, Materials Science Forum 2016; 852:525-529.

Google Scholar

[3] Orum A, Yildizhan, M. M, Sezen M, et al, Solid State Ionics 2016; 296:78-84.

Google Scholar

[4] Shuvaev A. M, Travkin V. D, Ivanov V. Y, Mukhin A. A, Pimenov A, Phys. Rev.Lett. 2010; 104:097202.

Google Scholar

[5] Ishiwata S, Taguchi Y, Murakawa H, Onose Y, Tokura Y, Science 2008; 319:1643–1646.

DOI: 10.1126/science.1154507

Google Scholar

[6] Liu Y. Y, Chen X. M, Liu X. Q, Li L, Appl.Phys.Lett. 2007; 90:192905.

Google Scholar

[7] Li M, Su X. Y, Liu L, et al, Science of Advanced Materials 2017; 9(3):587-590.

Google Scholar

[8] Zhang N, Li Q. J, Huang S. G, et al, Cheminform 2016; 46(49):1-8.

Google Scholar

[9] Yang C, Xu J, Journal of Materials Science Materials in Electronics 2016; 27(11):1-6.

Google Scholar

[10] C.C. Vidyasagar, H.B. Muralidhara, Y.A. Naik, et al., Energy Environ. Focus, 2015; 4(10), 54-63.

Google Scholar

[11] B. Madhavan, A. Ashok, J. Sol-Gel Sci. Technol. 2015; 73(1), 1-8.

Google Scholar

[12] Zhang F.X, Manoun B, Saxena S.K, Mater. Lett. 2006; 60:2773.

Google Scholar

[13] Ikeda N, Ohsumi H, Ohwada K, Ishii K, Inami T, Kakurai K, Murakami Y, Yoshii K, Mori S, Horibe Y, Kitô H, Nature 2005; 436:1136–1138.

DOI: 10.1038/nature04039

Google Scholar

[14] A. Tiwari, K.P. Rajeev, J.Narayan, Solid State Commun. 2002; 121:357–361.

Google Scholar

[15] Yan H.X, Ning H.P, Kan Y.M, Wang P.L, Reece M.J, J. Am. Ceram. Soc. 2009; 92:2270-2275.

Google Scholar

[16] Hwang D.W, Kim H.G, Lee J.S, Kim J, Li W, Oh S.H, J. Phys. Chem. B 2005; 109:(2093).

Google Scholar

[17] Ramirez A. P, Shastry B. S, Hayashi A, Krajewski J. J, Huse D.A, Cava R.J, Phys. Rev. Lett. 2002; 89:067202.

Google Scholar

[18] Lian J, Zu X.T, Kutty K.V.G, Chen J, Wang L.M, Ewing R.C, Phys. Rev. B 2002; 66: 054108.

Google Scholar

[19] Vilquin B, Kanki T, Yanagida T, Tanaka H, Solid State Commun. 2005; 136:328.

Google Scholar

[20] Hwang D.W, Le J.S, Li W, Oh S.H, J. Phys. Chem. B 2003; 107:4963.

Google Scholar

[21] Kim W.S, Ha S. M, Yun S, Park H.H, Thin Solid Films 2002, s 420–421(47):575-578.

DOI: 10.1016/s0040-6090(02)00837-4

Google Scholar

[22] Hu B, Man B.Y, Yang C, Liu M, Chen C.S, Gao X.G, Xu S.C, Wang C.C, Sun Z.C, Applied Surface Science 2011; 258:525-529.

Google Scholar

[23] Laguta V. V, Kondakova I. V, Bykov I. P, Glinchuk M. D, Tkach A, Vilarinho P. M, and Jastrabik L, Physical Review B, 2007; 76:054104.

Google Scholar

[24] Geck J, Buchner B, Hucker M, Klingeler R, and Gross R,Geck J, Buchner B, Hucker M, Klingeler R, and Gross R, Physical Review B 2001; 64:144430.

Google Scholar

[25] Chen Y, Xu J. X, Cui Y. M, et al, Progress in Natural Science: Materials International 2016; 26:158-162.

Google Scholar

[26] Xu J. X, Cui Y. M, Xu H. Z, Ceramics International 2014; 40:12193.

Google Scholar

[27] Lu C, Cui Y. M, Physica B 2014; 432:58.

Google Scholar

[28] Xu J. X, Cui Y. M, Materials Science and Engineering B 2013; 178:316.

Google Scholar

[29] Lu C, Cui Y. M, Physica B 2012; 407:3856.

Google Scholar

[30] Wang C.C, Cui Y.M, Xie G. L, Chen C. P, Zhang L. W, Phys. Rev. B 2005; 72:064513.

Google Scholar

[31] Chen Y, Cui Y. M, Yao J. E, RSC Advances 2016; 6(103):101571-101577.

Google Scholar

[32] Richter J, Holtappels P, Graule T, Nakamura T, Gauckler L. J. Monatsh. Chem. 2009; 140: 985-999.

DOI: 10.1007/s00706-009-0153-3

Google Scholar

[33] Cui Y. M, Zhang L.W, Xie C. L, Wang R. M, Solid State Commun. 2006; 138:481.

Google Scholar

[34] Cui Y. M, Zhang L. W, Wang R. M, Physica C 2006; 442:29.

Google Scholar

[35] Chen Y, Cui Y. M, Yao J. E, Progress in Natural Science: Materials International 2017; 27(5):593-597.

Google Scholar

[36] Tyson T. A, Wu T, Ahn K. H, Kim S. B, Cheong S. W, Phys. Rev. B. 2010; 81:054101.

Google Scholar

[37] Wang C.C, Cui Y. M, Zhang L. W, Appl. Phys. Lett. 2007; 90:012904.

Google Scholar

[38] Vilquin B, Kanki T, Yanagida T, Tanaka H, Solid State Commun. 2005; 136:328.

Google Scholar

[39] Wang C. C, Cui Y. M, Xie G. L, Chen C. P, Zhang L. W, Phys. Rev. B 2004; 72:064513.

Google Scholar