Mathematical Characterization of the Tensile Deformation Curve of Cast Iron Materials

Article Preview

Abstract:

The manufacturing process gives cast iron castings properties which are dependent on component design, metallurgy and casting method. Factors as local wall thickness influences the coarseness and type of microstructure and the material will have local properties depending on the local metallurgical and thermal history. The stress/strain behaviour of cast products at load are typically performed by using a tensile test machine.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] J. Olofsson, Simulation of Microstructure-based Mechanical Behavior of Cast Components, Ph.D. thesis, (Jönköping University, School of Engineering, 2014).

Google Scholar

[2] T. Sjögren, I.L. Svensson, Studying Elastic Deformation Behavior of Cast Irons by Acoustic Emission, Int. J Cast Met Res. 18 (2005) 249-256.

DOI: 10.1179/136404605225023117

Google Scholar

[3] P. Mazilu, G. Ondracek, On the Effective Young's Modulus of Elasticity for Porous Materials, Part I: The General Model Equation, in: Herrmann K., Olesiak Z. (eds.), Thermal Effects in Fracture of Multiphase Materials. Proc. Euromech. Colloquium 255. Springer Verlag Heidelberg Tokyo New York pp.214-230.

DOI: 10.1007/978-3-642-88479-5_22

Google Scholar

[4] A.R., Boccaccini, Young's Modulus of Cast-Iron as a Function of Volume Content, Shape and Orientation of Graphite inclusions, Z. Metallkd. 88 (1997) 23-26.

Google Scholar

[5] F. Wilberfors, I.L. Svensson, The Effect of Nitrogen and Inoculation on The Tensile Properties and Microstructure of Cast Iron with Lamellar Graphite, Key Eng. Mater. 457 (2011) 114-119.

DOI: 10.4028/www.scientific.net/kem.457.114

Google Scholar

[6] SS-EN ISO 6892-1:2009(E): Metallic materials – Tensile testing – Part 1: Method of test at room temperature, B. European Committee for Standardization.

Google Scholar

[7] J. R. Davis editor & Associates, Tensile testing 2nd edition, ASM International, ISBN 0-87170 -X (2004).

Google Scholar

[8] H. Hollomon, Trans. AIME 162, (1945), 268.

Google Scholar

[9] D. C. Ludwigson, Modified stress-strain relation for FCC metals and alloys, Metal. Trans. 2, (1971) 2825-2828.

DOI: 10.1007/bf02813258

Google Scholar

[10] T. Sjögren, I.L. Svensson, Modelling the effect of graphite morphology on the modulus of elasticity in cast irons, Int. J. Cast Metal. Res. 17(5) (2004) 271-279.

DOI: 10.1179/136404604225022694

Google Scholar

[11] J. Olofsson, I.L. Svensson, Casting and stress-strain simulations of a cast ductile iron component using microstructure based mechanical behavior, IOP Conf. Series: Materials Science and Engineering 33 (2012).

DOI: 10.1088/1757-899x/33/1/012051

Google Scholar

[12] T. Sjögren, Studying elastic deformation behaviour of cast irons by acoustic emission, Int. J. Cast Metal Res. 18(4) (2005) 249-256.

DOI: 10.1179/136404605225023117

Google Scholar

[13] I.L. Svensson, T. Sjögren, On modeling and simulation of mechanical properties of cast irons with different morphologies of graphite, Int. J. Metalcast. 3 (4) (2009) 67-77.

DOI: 10.1007/bf03355460

Google Scholar

[14] I.L. Svensson, J. Olofsson, On microstructure-based mechanical behaviour of a ductile iron component, 10th International Symposium on the Science and Processing of Cast Iron – SPCI10 2014, Mar det plata, Argentina.

Google Scholar

[15] J. Olofsson, K. Salomonsson, I.L. Svensson, Modelling and simulations of ductile iron solidification-induced variations in mechanical behaviour on component and microstructural level, IOP Conf. Ser.-Mat. Sci. 84 (2015), 012026.

DOI: 10.1088/1757-899x/84/1/012026

Google Scholar

[16] K. Kasvayee, K. Salomonsson, E. Ghassemali, Anders E.W. Jarfors, Microstructural strain distribution in ductile iron; comparison between finite element simulation and digital image correlation measurements, Mat. Sci. Eng. A – Struct. 655 (2016).

DOI: 10.1016/j.msea.2015.12.056

Google Scholar

[17] J. Olofsson, I.L. Svensson, Incorporating predicted local mechanical behaviour of cast components into finite element simulations, Materials & Design 34 (2012) 494-500.

DOI: 10.1016/j.matdes.2011.08.029

Google Scholar

[18] H. Fredriksson, I.L. Svensson, Computer Simulation of the Structure Formed During Solidification of Cast Iron, in: H. Fredriksson, M. Hillert (eds.) The Physical Metallurgy of Cast Iron:  proceedings of the Third International Symposium on the Physical Metallurgy of Cast Iron, Stockholm, Sweden, August 29-31, 1984, New York: North-Holland, 1985, pp.273-284.

DOI: 10.1557/proc-34-273

Google Scholar

[19] R. Hooke, T.A Jeeves, Direct search, solution of numerical and statistical problems, J. Assoc. Comput. Mach. 8 (2) (1961) 212–229.

DOI: 10.1145/321062.321069

Google Scholar

[20] W.C. Davidon, Variable metric method for minimization, SIAM J. Optimiz. 1 (1) (1991) 1-17.

Google Scholar