[1]
50th Census of World Casting Production, Mod. Cast. - A Publ. Am. Foundry Soc. (2016) 25–29.
Google Scholar
[2]
N.S. Tiedje, Solidification, processing and properties of ductile cast iron, Mater. Sci. Technol. 26 (2010) 505–514.
Google Scholar
[3]
T. Andriollo, J. Hattel, On the isotropic elastic constants of graphite nodules in ductile cast iron: Analytical and numerical micromechanical investigations, Mech. Mater. 96 (2016) 138–150.
DOI: 10.1016/j.mechmat.2016.02.007
Google Scholar
[4]
T. Andriollo, Graphite nodules and local residual stresses in ductile iron: Thermo-mechanical modeling and experimental validation, PhD thesis, Technical University of Denmark, ISBN: 978-87-7475-476-3, (2017).
Google Scholar
[5]
Y.B. Zhang, T. Andriollo, S. Fæster, W. Liu, J. Hattel, R.I. Barabash, Three-dimensional local residual stress and orientation gradients near graphite nodules in ductile cast iron, Acta Mater. 121 (2016) 173–180.
DOI: 10.1016/j.actamat.2016.09.009
Google Scholar
[6]
T. Andriollo, J. Thorborg, N. Tiedje, J. Hattel, A micro-mechanical analysis of thermo-elastic properties and local residual stresses in ductile iron based on a new anisotropic model for the graphite nodules, Model. Simul. Mater. Sci. Eng. 24 (2016) 055012(19pp).
DOI: 10.1088/0965-0393/24/5/055012
Google Scholar
[7]
T. Andriollo, K. Hellström, M.R. Sonne, J. Thorborg, N. Tiedje, J. Hattel, Uncovering the local inelastic interactions during manufacture of ductile cast iron: How the substructure of the graphite particles can induce residual stress concentrations in the matrix, J. Mech. Phys. Solids 111 (2018) 333–357.
DOI: 10.1016/j.jmps.2017.11.005
Google Scholar
[8]
MAGMA GmbH, MAGMA5 simulation software, (2017).
Google Scholar
[9]
M.R. Sonne, J. Thorborg, J.H. Hattel, Modelling the effect of coating on the stresses and microstructure evolution in chill casting of wind turbine main shafts, Wind Energy. (2017).
DOI: 10.1002/we.2114
Google Scholar
[10]
N. Bonora, A. Ruggiero, Micromechanical modeling of ductile cast iron incorporating damage. Part I: Ferritic ductile cast iron, Int. J. Solids Struct. 42 (2005) 1401–1424.
DOI: 10.1016/j.ijsolstr.2004.07.025
Google Scholar
[11]
C. Berdin, M.J. Dong, C. Prioul, Local approach of damage and fracture toughness for nodular cast iron, Eng. Fract. Mech. 68 (2001) 1107–1117.
DOI: 10.1016/s0013-7944(01)00010-8
Google Scholar
[12]
D. Peric, On a class of constitutive equations in viscoplasticity: formulation and computational issues, Int. J. Numer. Methods Eng. 36 (1993).
Google Scholar
[13]
J. Schneibel, M. Heilmaier, Hall-Petch Breakdown at Elevated Temperatures, Mater. Trans. 55 (2014) 44–51.
DOI: 10.2320/matertrans.ma201309
Google Scholar
[14]
D.K.L. Tsang, B.J. Marsden, S.L. Fok, G. Hall, Graphite thermal expansion relationship for different temperature ranges, Carbon N. Y. 43 (2005) 2902–2906.
DOI: 10.1016/j.carbon.2005.06.009
Google Scholar
[15]
H. Qin, Y. Sun, J.Z. Liu, Y. Liu, Mechanical properties of wrinkled graphene generated by topological defects, Carbon N. Y. 108 (2016) 204–214.
DOI: 10.1016/j.carbon.2016.07.014
Google Scholar
[16]
F.E. Faris, L. Green, C.A. Smith, The thermal dependence of the elastic moduli of polycrystalline graphite, J. Appl. Phys. 23 (1952) 89–95.
DOI: 10.1063/1.1701984
Google Scholar
[17]
D.K.L. Tsang, B.J. Marsden, S.L. Fok, G. Hall, Graphite thermal expansion relationship for different temperature ranges, Carbon N. Y. 43 (2005) 2902–2906.
DOI: 10.1016/j.carbon.2005.06.009
Google Scholar
[18]
G. Savini, Y.J. Dappe, S. Öberg, J.C. Charlier, M.I. Katsnelson, A. Fasolino, Bending modes, elastic constants and mechanical stability of graphitic systems, Carbon N. Y. 49 (2011) 62–69.
DOI: 10.1016/j.carbon.2010.08.042
Google Scholar