"Cast Iron - A Predictable Material” 25 Years of Modeling the Manufacture, Structures and Properties of Cast Iron

Article Preview

Abstract:

During the last 25 years, casting process simulation has developed from predicting hot spots and solidification paths to an integral assessment and optimization tool for foundries for the entire manufacturing route of castings. Modeling cast irons has always been a special challenge due to the strong interdependency between the alloy composition, applied metallurgy and metal treatment with the solidification, phases and structures which form and the resulting properties of the material.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] P. N. Hansen, E. Flender and J. C. Sturm, Casting Process Simulation – From the Idea 30 Years ago to Reality Today, International Foundry Research 61 (2009) 12-29.

Google Scholar

[2] J. C. Sturm, Die Prozess-Entwicklungs-Kette: Nutzung von Eigenschafts-Vorhersagen für Gusseisenwerkstoffe für innovative Bauteil-Konstruktionen, Gießerei 90 (2003) 56-58.

Google Scholar

[3] J. C. Sturm, G. Busch, Cast Iron - a predictable material, WFC 2010 Hangzhou, China.

Google Scholar

[4] M. Schneider, J. C. Sturm, W. Schaefer, E. Hepp, V. Gurevich, Integrated Computational Materials Engineering and Modelling of Shape Casting Processes – Needs, Benefits, Limitations, and Hurdles, in Proceedings of MCWASP 2015 (21.-26.06.2015, Hyogo, Japan).

DOI: 10.1088/1757-899x/84/1/012035

Google Scholar

[5] H. Fredriksson, I .L. Svensson, Computer Simulation of the Structure Formed During Solidification of Cast Iron, The Physical Metallurgy of Cast Iron; Stockholm; Sweden; 29-31 Aug. 1984, pp.273-284.

DOI: 10.1557/proc-34-273

Google Scholar

[6] E. Lundbäck, I. L. Svensson, Prediction of Properties of Nodular Cast Iron Castings, by means of Computer Simulation, Proceedings of Modelling of Casting, Welding and Advanced Solidification Processes Conference TMS-V, Davos Sept. (1990).

Google Scholar

[7] M. Wessen, I. L. Svensson, Modeling of ferrite growth in nodular cast iron, Metall. Mater. Trans. A 27 (1996) 2209-2220.

DOI: 10.1007/bf02651875

Google Scholar

[8] M. Wessén, I. Svensson (1999), Application of microstructure modelling for ductile iron alloy property optimization, Revue de Metallurgie, ISSN 0035-1563, 96 (no JA99) (1999) 142.

Google Scholar

[9] I. L. Svensson, M. Wessén, Foundry of Cast irons: Processing and Simulation, Numerical Simulation of Foundry Processes, Sept. 2001, pp.87-145.

Google Scholar

[10] A. Diószegi, I. L. Svensson, Inverse kinetic analysis method to study eutectic growth, Int. J. Cast Metal. Res. 18 (2005) 41-46.

DOI: 10.1179/136404605225022829

Google Scholar

[11] A. Diószegi, K. Liu, I. L. Svensson, Inoculation of Primary Austenite in Grey Cast Iron, Int. J. Cast Metal. Res. 20 (2007) 68-72.

DOI: 10.1179/174313307x216633

Google Scholar

[12] A. Heinrietz, J. Eufinger, W. Stets, u. a.: Maßgeschneiderte Bauteileigenschaften durch Integration von Fertigungs- und Funktionssimulation. Abschlussbericht BMBF Projekt Nr. 01R/0713, (2011).

Google Scholar

[13] A. Rechsteiner, Proceedings of German MAGMA User Meeting, October 2003, Vaals, The Netherlands.

Google Scholar

[14] C. Heisser, J. C. Sturm, Casting Process Simulation of Compacted Graphite Iron, (03-025), 107th Casting Congress Milwaukee, Wisconsin, 26-28 April, 2003, pp.685-692.

Google Scholar

[15] U. Weiss, M. Broda, P. Rong, Die Rolle des Eisengießers bei der virtuellen Produktentwicklung im Automobilbau, Presentation on the MAGMA Seminar Gusseisen - Ein Werkstoff mit Zukunft,, Duisburg, Mai (2002).

Google Scholar

[16] W. Simon, U. Weiss, Gussteilentwicklung im Zeichen neuartiger Anforderungen, Proceedings of NEWCAST-Forum, Düsseldorf: Konstruieren mit Gusswerkstoffen,, June 18, 2003, pp.3-11.

Google Scholar

[17] J. Olofsson, Simulation of Microstructure-based Mechanical Behaviour of Cast Components, Ph.D. thesis, (Jönköping University, School of Engineering, 2014).

Google Scholar

[18] T. Sjögren, I. L. Svensson, Modelling the effect of graphite morphology on the modulus of elasticity in cast irons, Int. J. Cast Metal. Res. 17 (2004) 271-279.

DOI: 10.1179/136404604225022694

Google Scholar

[19] I. L. Svensson, T. Sjögren, On modeling and simulation of mechanical properties of cast irons with different morphologies of graphite, Inter. Metalcast. 3 (2009) 67-77.

DOI: 10.1007/bf03355460

Google Scholar

[20] I. L. Svensson , J. Olofsson, On microstructure-based mechanical behaviour of a ductile iron component, proceedings of 10th International Symposium on the Science and Processing of Cast Iron SPCI10, 2014, Mar det plata, Argentina.

Google Scholar

[21] E. Hepp, M. Dzusov, W. Schäfer, Process optimization for an energy efficient heat treatment of ADI, HTM J. Heat Treatm. Mat.70 (2015) 239-247.

DOI: 10.3139/105.110268

Google Scholar

[22] C. Thomser, M. Bodenburg, J.C. Sturm, Optimized durability prediction of cast iron based on local microstructure, Int. J. Metalcast. 11 (2017) 207-215.

DOI: 10.1007/s40962-016-0091-x

Google Scholar

[23] J. Olofsson, I. L. Svensson, Incorporating predicted local mechanical behaviour of cast components into finite element simulations, Materials & Design 34 (2012) 494-500.

DOI: 10.1016/j.matdes.2011.08.029

Google Scholar

[24] C. Heisser, N. Zenker, E. Fritsche, J. C. Sturm, Prediction of microstructure and local mechanical properties for a CGI crankcase, Proceedings of the AFS Annual Congress, 06/(2015).

Google Scholar

[25] J.C. Sturm, I. Hahn, Von der Simulation zur gießtechnischen Optimierung, Giesserei 102 (2015) 86-100.

Google Scholar

[26] I. Hahn, J. C. Sturm, Autonomous optimization of casting processes and designs, WFO Technical Forum 2011, Düsseldorf, 28.06.-02.07.(2011).

Google Scholar

[27] D. Coyle, Minimizing Casting Costs by Autonomously Simulating Different Gating Systems for Ductile Iron Castings, in Proceedings of the AFS Annual Congress (2017).

Google Scholar