Effects of Different Annealing Times on Microstructure and Tensile Properties of Joints Welded 5052 Aluminum Alloy in Marine Industry

Article Preview

Abstract:

The welding process is widely used for boat building, but the process for aluminum (base metal) is affected by the welding heat may affect the mechanical properties of the joint. The objective of this study was to evaluate the effect of different annealing times of welded joints of naval aluminum 5052 by MIG. The thermal annealing treatments were 30 and 60 min. at 300 °C. For the evaluation of the influence of different times of annealing on the properties were carried out tensile, hardness and their microstructures observed by optical microscopy. The heat treatment using 30 min. at 300 °C got higher mechanical property. The tensile test showed a higher value for the treatment 30 min. The microhardness showed a higher value for the weld pool of treatment 30 minu.. Microscopic analysis showed microstructural changes after annealing.

You might also be interested in these eBooks

Info:

[1] S. William, Princípios de Ciências e Engenharia de Materiais. 3ªEd., Lisboa: McGraw-Hill, 1996, 892p.

Google Scholar

[2] L. Shu-lin, W. Shu-sen, Z. Ze-Ming, A. Ping, M. You-Wu. Effect of semi-solid processing on microstructure and mechanical properties of 5052 aluminum alloy. Trans. Nonferrous Met. Soc. China, 20 (2010) s758-s762.

DOI: 10.1016/s1003-6326(10)60577-8

Google Scholar

[3] T.L. Tsai, P.L. Sun, P.W. Kao, C.P. Chang. Microstructure and tensile properties of a commercial 5052 aluminum alloy processed by equal channel angular extrusion. Mater. Sci. Eng., A, 342 (2003) 144-151.

DOI: 10.1016/s0921-5093(02)00283-6

Google Scholar

[4] H. Zhu, A.K. Ghosh, K. Maruyama, Effect of cold rolling on microstructure and material properties of 5052 alloy sheet produced by continuous casting. Mater. Sci. Eng. A. 419 (2006.) 115-121.

DOI: 10.1016/j.msea.2005.12.008

Google Scholar

[5] SAVI, Bruna Martinello. Desenvolvimento tecnológico para soldagem MIG de ligas de alumínio 5083 H116. Tese (Mestrado em Ciência e Engenharia de Materiais) Universidade Federal de Santa Catarina, SC, Brazil, 2014. Information on http://www.labsolda.ufsc.br/site/ publicacoes/teses_dissertacoes/disse_2014_bruna.pdf.

DOI: 10.20872/24478407/regmpe.v2n3p125-145

Google Scholar

[6] Z. Chen, J. Lu, H. Liu, X. Liao, Experimental investigation on the post-fire mechanical properties of structural aluminum alloys 6061-T6 and 7075-T73. Thin-Walled Structures 106 (2016) 187–200.

DOI: 10.1016/j.tws.2016.05.005

Google Scholar

[7] Z. Zhang, S. Dong, Y. Wang, B. Xu, J. Fang, P. He, Microstructure characteristics of thick aluminum alloy plate joints welded by fiber laser. Mater. Des., 84 (2015) 173–177.

DOI: 10.1016/j.matdes.2015.06.087

Google Scholar

[8] K. Mutombo, M. du Toit, Corrosion fatigue behaviour of aluminium alloy 6061-T651 welded using fully automatic gas metal arc welding and ER5183 filler alloy. Int. J. Fatigue 33 (2011) 1539-1547.

DOI: 10.1016/j.ijfatigue.2011.06.012

Google Scholar