Determination of Mechanical Properties for Microhardness Mapping in a 5052 Aluminum Alloy Welded by Mig Process

Article Preview

Abstract:

Aluminum alloys are widely used in shipbuilding, it is a material with good mechanical strength, high corrosion resistance and good conformation. In this study we used the filler metal 5183 aluminum alloy, groove angle 80°, root opening 0,5mm, stick-out 12 a 14mm, voltage 23V, torch 99,99%Ar, transfer mode Pulsed, current 220A, wire speed 30cm/min, gas flow 25l/min. The aim of this study was to research the mechanical strength in a welded joint naval 5052 aluminum alloy welded by Metal Inert Gas-MIG process using a mapping microhardness and software images. They were also carried out the tensile test, chemical analysis of the studied alloy and optical microscopy. The results of microhardness showed that the weld pool showed lower values. Optical microscopy showed that the weld pool had bubbles and the tensile test was presented fracture in the welded joint.

You might also be interested in these eBooks

Info:

[1] G. Qin, Y. Ji, H. Ma, Z. Ao: J. Mater. Process. Technol. Vol. 245 (2017), p.115.

Google Scholar

[2] Z. Ye, J. Huang, W. Gao, Y. Zhang, Z. Cheng, S. Chen, J. Yang: Mater. and Des. Vol. 17 (2017), p. S0264.

Google Scholar

[3] J.H. Lee, S.H. Park, H.S. Kwon, G.S. Kim, C.S. Lee, Laser: Mater. and Des. Vol. 64 (2014), p.559.

Google Scholar

[4] R.D. Fu, J.F. Zhang, Y.J. Li, J. Kang, H.J. Liu, F.C. Zhang: Mater. Sci. Eng. A Vol. 559 (2013), p.319.

Google Scholar

[5] C.H. Cáceres, J.R. Griffiths, A.R. Pakdel, C.J. Davidson: Mater. Sci. Eng. A Vol. 402 (2005), p.258.

Google Scholar

[6] M. Naderi, A. Saeed Akbari, W. Bleck: Mater. Lett. Vol. 62 (2008), p.1132.

Google Scholar

[7] U.C. Archiopoli, N. Mingolo, O.E. Martínez, Two-dimensional mapping of micro-hardness increase on surface treated steel determined by photothermal deflection microscopy, Surf. & Coat. Techn. Vol. 205 (2005), p.3087.

DOI: 10.1016/j.surfcoat.2010.11.022

Google Scholar

[8] W. Zhu, J.J. Hughes, N. Bicanic, C.J. Pearce: Mater. Charac. Vol. 58 (2007), p.1189.

Google Scholar

[9] R.D. Fu, J.F. Zhang, Y.J. Li, J. Kang, H.J. Liu, F.C. Zhang: Mat Sci Eng A. Vol. 559 (2013), p.319.

Google Scholar

[10] Software MatLab Version R2011b (7.13.0.562), licença número 161052, de abril 14, (2011).

Google Scholar

[11] A. Garcia, J.A. Spim, C.A. Santos: Ensaios dos Materiais. (LTC second ed. Rio de Janeiro, 2012).

Google Scholar

[12] J.W. Bray: Aluminum Mill and Engineered Wrought Products, in: ASM Handbook Volume 2, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM International, United States of America, (1990).

DOI: 10.31399/asm.hb.v02.a0001059

Google Scholar

[13] R. Narayanasamy, R. Ravindran, K. Manonmani, J. Satheesh: Mater. and Des. Vol. 30 (2009), p.1804.

Google Scholar

[14] K. Li, F.G. Lu, S.T. Guo, H.C.X. H Cui: Chong. Trans. Nonferrous Met. Soc. China Vol. 25 (2015), p.2516.

Google Scholar

[15] S.J. Kim, S.K Jang, M.S. Han, J.C. Park, J.Y. S.O Jeong: Chong. Trans. Nonferrous Met. Soc. China Vol. 23 (2013), p.636.

Google Scholar