Electrochemical Behavior of Hot Treated Ti-12Mo-8Nb Alloy

Article Preview

Abstract:

Several beta titanium alloys are finding ever-increasing applications in biomaterials, due to the combination of its mechanical properties including low elasticity modulus, high strength, fatigue resistance and good ductility with improved corrosion resistance. In this regard, a new beta titanium Ti-12Mo-8Nb alloy was developed as an alternative to the traditional alloy Ti-6Al-4V. Studies have shown that the release of vanadium (V) and aluminum (Al) ions in the human body may cause cytotoxic effects and neurological disorders, respectively. Additionally, this new alloy presented higher ratio of hardness to elastic modulus, as compared to the commercial Ti-6Al-4V alloy. This paper presents the electrochemical behavior and mechanical properties of the Ti-12Mo-8Nb heat treated at 950 oC for 1h under high vacuum and then water quenched. The electrochemical behavior was carried through potentiodynamic polarization curves using Ringer's solution to simulate the body fluid. The Ti-12Mo-8Nb alloy presented a microstructure consisting of β phase with good mechanical properties and a passive layer was formed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

368-373

Citation:

Online since:

September 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. L. Zhou, M. Niinomi, T. Akahori, H. Fukui, H. Toda: Mater Sci Eng A Vol. 398 (2005), p.28.

Google Scholar

[2] Y.B. Tan, J.L. Duan, L.H. Yang, W.C. Liu, J.W. Zhang, R. P. Liu: Mater Sci Eng A Vol. 698 (2014), p.226.

Google Scholar

[3] M. Wen, C. Wen, P. Hodgson, Y. Li: Materials and Design Vol. 56 (2014), p.629.

Google Scholar

[4] S. Guo, Q.K. Meng, X.N. Cheng, X.Q. Zhao, J. Mech. Behav: Biomed. Mat. Vol. 38 (2014), p.26.

Google Scholar

[5] S. Guo, Q.K. Meng, X.N. Cheng, X.Q. Zhao: Vol. 133 (2014), p.236.

Google Scholar

[6] S.B. Gabriel, C.A. Nunes, G.A. Soares: Artif Organs Vol. 32 (2008), p.299.

Google Scholar

[7] S.B. Gabriel, J. Dille, C.A. Nunes, G.A. Soares: Mat. Research Vol. 13 (2010), p.1.

Google Scholar

[8] S.B. Gabriel, M.C. Rezende, L.H. de Almeida, C.A. Nunes, J. Dille, G.A. Soares: Materials Research Vol. 18 (2015), p.39.

Google Scholar

[9] S.B. Gabriel, J. Dille, M.C. Rezende, P. Mei, L.H. Almeida, R. Baldan, C.A. Nunes, Materials Research Vol. 18 (2015), p.8.

Google Scholar

[10] L.H. de Almeida, I.N. Bastos, I.D. Santos, A.J.B. Dutra, C.A. Nunes, S.B. Gabriel, Journal of Alloys and Compounds Vol. 615 (2014), p. S666.

DOI: 10.1016/j.jallcom.2014.01.173

Google Scholar

[11] S.B. Gabriel, L.H. de Almeida, C.A. Nunes, J. Dille, G.A. Soares: Mater. Sci. Eng. C Vol. 33 (2013), p.3319.

Google Scholar

[12] S.B. Gabriel, J.V.P. Panaino, I.D. Santos, L.S. Araujo, P.R. Mei, L.H. de Almeida, C.A. Nunes: Journal of Alloys and Compounds Vol. 536S (2012), p. S208.

DOI: 10.1016/j.jallcom.2011.11.035

Google Scholar

[13] R. Chelariu, G. Bolat, J. Izquierdo, D. Mareci, D.M. Gordin, T. Gloriant, R.M. Souto: Electrochimica Acta Vol.137 (2014), p.280.

DOI: 10.1016/j.electacta.2014.06.021

Google Scholar

[14] W. Kraus, G. J.Nolze: J Appl Crystallogr. Vol. 29 (1996), p.301.

Google Scholar

[15] P. Villars, L.D. Calvert: Pearson's Handbook of Crystallographic Data for Intermetallic Phases. (Metals Park second ed. Ohio 1991).

Google Scholar

[16] P.S. Nnamchi, C.S. Obayi, I. Todd, M.W. Rainforth: Journal of the Mechanical Behavior of Biomedical Materials Vol. 60 (2016), p.68.

DOI: 10.1016/j.jmbbm.2015.12.023

Google Scholar