Influence of GPTMS Precursor Concentration as Pretreatment of Galvanized Steel

Article Preview

Abstract:

This work aims to evaluate the influence of the alkoxy precursor concentration on the morphological and electrochemical characteristics of the chemical conversion layer formed on a galvanized steel surface. Different films were obtained by the dip coating method varying precursor concentrations in 2, 5 and 10%. According to the SEM and EIS results the corrosion resistance property increases for higher GPTMS precursor concentrations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

428-433

Citation:

Online since:

September 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.A. Della Rovere, R. Silva, C. Moretti, S.E. Kuri: Engineering Failure Analysis Vol. 33 (2013), p.381.

Google Scholar

[2] A. Pritzel dos Santos, S.M. Manhabosco, J.S. Rodrigues, L.F.P. Dick: Surface and Coatings Technology Vol. 279 (2015), p.150.

DOI: 10.1016/j.surfcoat.2015.08.046

Google Scholar

[3] B. Ramazanzadeh, H. Vakili, R. Amini: Journal of Industrial and Engineering Chemistry Vol. 30 (2015), p.225.

Google Scholar

[4] R.Z. Zand, K. Verbeken, V. Flexer, A. Adriaens: Materials Chemistry and Physics Vol. 145 (2014), p.450.

Google Scholar

[5] I. Santana, A. Pepe, E. Jimenez-Pique, S. Pellice, I. Milošev, S. Ceré: Surface & Coatings Technology Vol. 265 (2015), p.106.

DOI: 10.1016/j.surfcoat.2015.01.050

Google Scholar

[6] J.I. Iribarren-Mateos, I. Buj-Corral, J. Vivancos-Calvet, C.Alemána, J.I. Iribarren, E. Armelin: Progress in Organic Coatings Vol. 81 (2015), p.47.

DOI: 10.1016/j.porgcoat.2014.12.014

Google Scholar

[7] P.R. Seré, M. Banera, W.A. Egli, C.I. Elsner, A.R. Di Sarli, C. Deyá: International Journal of Adhesion and Adhesives Vol. 65 (2016), p.88.

DOI: 10.1016/j.ijadhadh.2015.11.008

Google Scholar

[8] P. Balan, R.K.S. Raman, E.S. Chana, M.K. Harund, V. Swamy: Progress in Organic Coatings Vol. 90 (2016), p.222.

Google Scholar

[9] M. Mrad, M.F. Montemor, L. Dhouibi, E. Triki: Progress in Organic Coatings Vol. 73 (2012), p.264.

Google Scholar

[10] I.A. Ciobotaru, I. Maiora, D.I. Vaireanua, A. Cojocaru, S. Caprarescu, I.E. Ciobotaru: Applied Surface Science Vol. 371 (2016), p.275.

DOI: 10.1016/j.apsusc.2016.02.221

Google Scholar

[11] M. Yu, M. Liang, J. Liu, S. Li, B. Xue, H. Zhao: Applied Surface Science Vol. 363 (2016), p.229.

Google Scholar

[12] M.R.T. Doidjo, L. Belec, E. ArGSon, Y. Joliff, L. Lanarde, M. Meyer, M. Bonnaudet, F.X. Perrin: Progress in Organic Coatings Vol. 76 (2013), p.1765.

DOI: 10.1016/j.porgcoat.2013.05.014

Google Scholar

[13] S. Alinejad, R. Naderi, M. Mahdavian: Progress in Organic Coatings Vol. 101 (2016), p.142.

Google Scholar

[14] V. Dalmoro, J.H.Z. Santos, C. Alemán, D.S. Azambuja: Corrosion Science Vol. 92 (2015), p.200.

Google Scholar

[15] M.Wang, D. He, H. Xie, L. Fu, Y. Yu, Q. Zhang: Thin Solid Films Vol. 520 (2012), p.5610.

Google Scholar

[16] M. Longhi, S.R. Kunst, L.V.R. Beltrami, E.K. Kerstner, C.I.S. Filho, V.H.V. Sarmento, C. Malfatti: Materials Research Vol. 18 (2015), p.1140.

Google Scholar

[17] R.B. Vignesh, M.G. Sethuraman: Progress in Organic Coatings Vol. 77 (2014), p.136.

Google Scholar

[18] R.Z. Zand, K. Verbeken, A. Adriaens: Progress in Organic Coatings Vol. 72 (2011), p.709.

Google Scholar

[19] S.R. Kunst, H.R.P. Cardoso, L.V.R. Beltrami, C.T. Oliveira, T.L. Menezes, J.Z. Ferreira, C. de F. Malfatti: Materials Research Vol. 18 (2015), p.138.

Google Scholar

[20] A. Zomorodian, F. Brusciotti, A. Fernandes, M.J. Carmezim, T. Moura e Silva, J.C.S. Fernandes, M.F. Montemor: Surface & Coatings Technology Vol 206 (2012), p.4368.

DOI: 10.1016/j.surfcoat.2012.04.061

Google Scholar