Copper (II) Oxide Nanoparticles Immobilized in Cellulose Acetate Nanostructured Membrane

Article Preview

Abstract:

Copper (II) oxide (CuO) was successfully synthesized via sonochemical-assisted route, where it was incorporated in cellulose acetate (CA) to develop an antimicrobial textile by electrospinning. The CuO material was found to have a monoclinic crystal structure as determined by x-ray diffraction analysis (XRD). On the other hand, scanning electron micrographs (SEM) have shown spindle like morphology for the synthesized CuO. The micrographs of the electronspun material were found to have a smooth and bead-free morphology with a fiber diameter that range from 1.9 to 4.3 μm. The presence of CuO oxide in the polymer matrix was determined by energy dispersive x-ray spectroscopy (EDX) and optical microscopy. The actual loadings of CuO into the polymer matrix are slightly different from the expected amount, which might be attributed to the heterogeneous dispersion of the latter to the former. The incorporation of CuO in the polymer membrane slightly affected tensile property of the composite material. The CuO-CA samples were found to have antimicrobial activity against Pseudomonas aerugenosa ATCC 27853 as evaluated by Kirby-Bauer disk diffusion method. The present study has demonstrated the possibility of using the fibrous mats of cellulose acetate-copper oxide as a novel antimicrobial textile.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

176-180

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. R. Li, J. C. Wei, Y. F. Chiu, H. L. Su, F. C. Peng, and J. J. Lin, Evaluation on cytotoxicity and genotoxicity of the exfoliated silicate nanoclay,, ACS Appl. Mater. Interfaces, vol. 2, no. 6, p.1608–1613, (2010).

DOI: 10.1021/am1001162

Google Scholar

[2] S. Maisanaba, M. Puerto, S. Pichardo, M. Jordá, F. J. Moreno, S. Aucejo, and Á. Jos, In vitro toxicological assessment of clays for their use in food packaging applications,, Food Chem. Toxicol., vol. 57, p.266–275, (2013).

DOI: 10.1016/j.fct.2013.03.043

Google Scholar

[3] D. Van Berlo, P. Haberzettl, K. Gerloff, H. Li, A. M. Scherbart, C. Albrecht, and R. P. F. Schins, Investigation of the Cytotoxic and Proinflammatory Effects of Cement Dusts in Rat Alveolar Macrophages,, p.1548–1558, (2009).

DOI: 10.1021/tx900046x

Google Scholar

[4] S. Sinha Ray and M. Okamoto, Polymer/layered silicate nanocomposites: A review from preparation to processing,, Prog. Polym. Sci., vol. 28, no. 11, p.1539–1641, (2003).

DOI: 10.1016/j.progpolymsci.2003.08.002

Google Scholar

[5] M. Jorda-Beneyto, N. Ortuño, a Devis, S. Aucejo, M. Puerto, D. Gutiérrez-Praena, J. Houtman, S. Pichardo, S. Maisanaba, and a Jos, Use of nanoclay platelets in food packaging materials: technical and cytotoxicity approach.,, Food Addit. Contam. Part A. Chem. Anal. Control. Expo. Risk Assess., vol. 31, no. 3, p.354–63, (2014).

DOI: 10.1080/19440049.2013.874045

Google Scholar

[6] J. Gormley, I P, Addison, The In Vitro Cytotoxicity of Some Standard Clay Mineral Dusts of Respirable Size,, Clay Miner., vol. 18, pp.153-163, (1983).

DOI: 10.1180/claymin.1983.018.2.04

Google Scholar

[7] E. J. Murphy, E. Roberts, and L. A. Horrocks, SILICATE TOXICITY IN CELL CULTURES,, vol. 55, no. 2, p.597–605, (1993).

DOI: 10.1016/0306-4522(93)90527-m

Google Scholar

[8] H. J, M. S, P. M, G.-P. D, J. M, A. S, and J. A, Toxicity assessment of organomodified clays used in food contact materials on human target cell lines,, Appl. Clay Sci., vol. 90, p.150–158, (2014).

DOI: 10.1016/j.clay.2014.01.009

Google Scholar

[9] S. Maisanaba, D. Gutiérrez-Praena, S. Pichardo, F. J. Moreno, M. Jordá, A. M. Cameán, S. Aucejo, and A. Jos, Toxic effects of a modified montmorillonite clay on the human intestinal cell line Caco-2.,, J. Appl. Toxicol., vol. 34, no. 6, p.714–25, (2014).

DOI: 10.1002/jat.2945

Google Scholar

[10] S. Lordan, E. Kennedy, and C. L. Higginbotham, Cytotoxic effects induced by unmodified and organically modified nanoclays in the human hepatic HepG2 cell line,, no. November 2009, p.27–35, (2011).

DOI: 10.1002/jat.1564

Google Scholar

[11] K. S. Katti, A. H. Ambre, N. Peterka, and D. R. Katti, Use of unnatural amino acids for design of novel organomodified clays as components of nanocomposite biomaterials.,, Philos. Trans. A. Math. Phys. Eng. Sci., vol. 368, no. 1917, p.1963–1980, (2010).

DOI: 10.1098/rsta.2010.0008

Google Scholar

[12] F. Wang, Cancer Cell Culture—Methods and Protocols,, Vitr. Cell. Dev. Biol. - Anim., vol. 39, no. 10, p.476, (2003).

Google Scholar

[13] K. Popov, A. Kolosov, Y. Ermakov, V. Yachmenev, A. Yusipovich, N. Shabanova, B. Kogut, and A. Frid, Enhancement of clay zeta-potential by chelating agents,, Colloids Surfaces A Physicochem. Eng. Asp., vol. 244, no. 1–3, p.25–29, (2004).

DOI: 10.1016/j.colsurfa.2004.06.015

Google Scholar

[14] S. I. Marras, A. Tsimpliaraki, I. Zuburtikudis, and C. Panayiotou, Thermal and colloidal behavior of amine-treated clays: The role of amphiphilic organic cation concentration,, Journal of Colloid and Interface Science, vol. 315, p.520–527, (2007).

DOI: 10.1016/j.jcis.2007.06.023

Google Scholar

[15] E. T. and M. Szekeres, Colloidal behavior of aqueous montmorillonite suspensions : the specific role of pH in the presence of indifferent electrolytes,, Appl. Clay Sci., vol. 27, p.75–94, (2004).

DOI: 10.1016/j.clay.2004.01.001

Google Scholar

[16] H. Liu, P. Yuan, D. Liu, D. Tan, H. He, and J. Zhu, Effects of solid acidity of clay minerals on the thermal decomposition of 12-aminolauric acid,, J. Therm. Anal. Calorim., vol. 114, no. 1, p.125–130, (2013).

DOI: 10.1007/s10973-012-2887-0

Google Scholar

[17] D. Zadaka, A. Radian, and Y. G. Mishael, Applying zeta potential measurements to characterize the adsorption on montmorillonite of organic cations as monomers, micelles, or polymers,, J. Colloid Interface Sci., vol. 352, no. 1, p.171–177, (2010).

DOI: 10.1016/j.jcis.2010.08.010

Google Scholar

[18] H. Bouwmeester, S. Dekkers, M. Y. Noordam, W. I. Hagens, A. S. Bulder, C. de Heer, S. E. C. G. ten Voorde, S. W. P. Wijnhoven, H. J. P. Marvin, and A. J. A. M. Sips, Review of health safety aspects of nanotechnologies in food production,, Regul. Toxicol. Pharmacol., vol. 53, no. 1, p.52–62, (2009).

DOI: 10.1016/j.yrtph.2008.10.008

Google Scholar

[19] C. Silvestre, D. Duraccio, and S. Cimmino, Food packaging based on polymer nanomaterials,, Prog. Polym. Sci., vol. 36, no. 12, p.1766–1782, (2011).

DOI: 10.1016/j.progpolymsci.2011.02.003

Google Scholar