Microporous Aluminum Fumarate (A520) Metal-Organic Framework as Modifier to Free-Standing Mixed Matrix Membrane

Article Preview

Abstract:

Microporous aluminum fumarate (A520) is one of the very few metal-organic frameworks (MOFs) that have been promoted to the level of commercial applications and has recently been proven to exhibit a rigid character with an accessible permanent porosity. This study explored the maximum loading amount of A520 for mixed matrix membrane (MMM) preparation by blending it with polyimide (PI) using N-methylpyrrolidone (NMP) as solvent, without compromising the membrane integrity. Scanning electron microscope (SEM) images revealed that MOFs were able to infiltrate the pores and structures of the polymer, improving the interface and mechanical properties of the polymer, as supported by different characterizations like dynamic mechanical analysis (DMA), x-ray diffraction (XRD), and positron annihilation lifetime spectroscopy (PALS). Results showed that MOF loading beyond 10wt% revealed aggregations that compromised the integrity of the membrane.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

170-175

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Zhou, S. Kitagawa, Chem. Soc. Rev., Vol. 43 (2014), 5415-5418.

Google Scholar

[2] L. Arnold, S. Marx, G. Averlant, F. Stallmach, Chem. Ing. Tech. Vol. 85 (11) (2013), 1726–1733.

Google Scholar

[3] E. Alvarez, N. Guillou, C. Martineau, B. Bueken, B. V. de Voorde, C. Le Guillouzer, P. Fabry, F. Nouar, F. Taulelle, D. de Vos, J. S. Chang, K. H. Cho, N. Ramsahye, T. Devic, M. Daturi, G. Maurin, C. Serre, Angew. Chem. Int. Ed. Vol. 54 (2015).

DOI: 10.1002/anie.201410459

Google Scholar

[4] J. A. Coelho, A. M. Ribeiro, A. F. P. Ferreira, S. M. Lucena, A. E. Rodrigues, D. C. S. de Azevedo, Ind. Eng. Chem. Res. Vol. 55 (2016), 2134−2143.

Google Scholar

[5] S. Kitagawa, R. Kitaura, S. I. Noro, Angew. Chem. Int. Ed. Vol. 43 (2004), 2334–2375.

DOI: 10.1002/anie.200300610

Google Scholar

[6] F. Jeremias, D. Fröhlich, C. Janiak, S. K. Henninger, RSC Adv. Vol. 4 (2014), 24073.

Google Scholar

[7] Y. Ming, J. Purewal, D. Liu, A. Sudik, C. Xu, J. Yang, M. Veenstra, K. Rhodes, R. Soltis, J. Warner, M. Gaab, U. Müller, D. J. Siegel, Microporous Mesoporous Mater. Vol. 185 (2014), 235-244.

DOI: 10.1016/j.micromeso.2013.11.015

Google Scholar

[8] R. Lin, L. Ge, L. Hou, E. Strounina, V. Rudolph, Z. Zhu, ACS Appl. Mater. Interfaces Vol. 6 (2014), 5609-5618.

DOI: 10.1021/am500081e

Google Scholar

[9] J. Zhang, H. Chen, Y. Li, R. Suzuki, T. Ohdaira, Y. Jean, Radiat. Phys. Chem. Vol. 76 (2007), 172-179.

Google Scholar

[10] C. C. Hu, T. C. Liu, K. R. Lee, R. C. Ruaan, J. Y. Lai, Desalination Vol. 193 (2006), 14-24.

Google Scholar

[11] P. Wen, P. Gong, J. Sun, J. Wang, S. Yang, J. Mater. Chemistry A Issue 29 (2015).

Google Scholar