A Disperse Nanofiller Aggregation in Polymer Nanocomposites: Description within the Framework of Irreversible Aggregation Model

Article Preview

Abstract:

The applicability of irreversible aggregation model for theoretical description of nanofiller particles aggregation processes in polymer nanocomposites has been shown. The correspondence of the indicated model and strength dispersive theory results was obtained. The main factors, influencing on nanoparticles aggregation process, were revealed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

49-54

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. V. Kozlov, Yu. G. Yanovsky, G. E. Zaikov, Structure and Properties of Particulate-Filled Polymer Composites: the Fractal Analysis, Nova Science Publishers, Inc., New York, (2010).

Google Scholar

[2] D. C. Edwards, Polymer-filler interactions in rubber reinforcement, J. Mater. Sci., 25 12 (1990) 4175-4185.

DOI: 10.1007/bf00581070

Google Scholar

[3] A. K. Mikitaev, G. V. Kozlov, G. E. Zaikov, Polymer Nanocomposites: Variety of Structural Forms and Applications, Nova Science Publishers, Inc., New York, (2008).

Google Scholar

[4] A. L. Buchachenko, Nanochemistry - a direct way to high technologies of a new century, Uspekhi Khimii, 72 5 (2003) 419-437.

Google Scholar

[5] G. V. Kozlov, Yu. G. Yanovsky, G. E. Zaikov, Synergetics and Fractal Analysis of Polymer Composites Filled with Short Fibers, Nova Science Publishers, Inc., New York, (2011).

Google Scholar

[6] M. Sumita, Y. Tsukumo, K. Miyasaka, K. Ishikawa, Tensile yield stress of polypropylene composites filled with ultrafine particles, J. Mater. Sci., 18 5 (1983) 1758-1764.

DOI: 10.1007/bf00542072

Google Scholar

[7] R. W. K. Honeycombe, The Plastic Deformation of Metals, Edward Arnold Publishers, Cambridge, (1968).

Google Scholar

[8] G. V. Kozlov, G. E. Zaikov, Structure of the Polymer Amorphous State, Brill Academic Publishers, Utrecht-Boston, (2004).

Google Scholar

[9] A. S. Balankin, Synergetics of Deformable Body, Publishers of Ministry Defence SSSR, Moscow, (1991).

Google Scholar

[10] G. V. Kozlov, D. S. Sanditov, Anharmonic Effects and Physical-Mechanical Properties of Polymers, Nauka, Novosibirsk, (1994).

Google Scholar

[11] N. Sheng, M. C. Boyce, D. M. Parks, G. C. Rutledge, J. I. Abes, R. E. Cohen, Multiscale micromechanical modeling of polymer/clay nanocomposites and the effective clay particle, Polymer, 45 2 (2004) 487-506.

DOI: 10.1016/j.polymer.2003.10.100

Google Scholar

[12] D. A. Weitz, J. S. Huang, M. Y. Lin, Sung, Dynamics of diffusion-limited kinetic aggregation, J. Phys. Rev. Lett., 53 17 (1984) 1657-1660.

DOI: 10.1103/physrevlett.53.1657

Google Scholar

[13] L. M. Brady, R. C. Ball, Fractal growth of copper electrodeposits, Nature, 309 5965 (1984) 225-22.

DOI: 10.1038/309225a0

Google Scholar