A Carbon Nanotubes Aggregation in Polymer Nanocomposites

Article Preview

Abstract:

Carbon nanotubes aggregation process in aggregates (bundles) has been studied. This process results in essential reduction of nanocomposites attainable elasticity modulus. The bundles packing density is defined by aggregation expectation time and corresponding carbon nanotube walk dimension up to sticking with a similar nanotube.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

55-60

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. V. Kozlov, Yu. G. Yanovskii, G. E. Zaikov, Structure and Properties of Particulate-Filled Polymer Composites: the Fractal Analysis, Nova Science Publishers, Inc., New York, (2010).

Google Scholar

[2] A. K. Mikitaev, G. V. Kozlov, G. E. Zaikov, Polymer Nanocomposites: Variety of Structural Forms and Applications, Nova Science Publishers, Inc., New York, (2008).

Google Scholar

[3] B. A. Komarov, E. A. Dzhavadyan, V. I. Irzhak, A. G. Ryabenko, V. A. Lesnichaya, G. I. Zvereva, A. V. Krestinin, Epoxyamino composites with ultra-low concentrations of single-walled carbon nanotubes, Polymer Science-Series A, 53 6 (2011).

DOI: 10.1134/s0965545x11060071

Google Scholar

[4] S. Ahmed, F. R. Jones, A review of particulate reinforcement theories for polymer composites, J. Mater. Sci., 25 12 (1990) 4933-4942.

DOI: 10.1007/bf00580110

Google Scholar

[5] N. Sheng, M. C. Boyce, D. M. Parks, G. C. Rutledge, J. I. Abes, R. E. Cohen, Multiscale micromechanical modeling of polymer/clay nanocomposites and the effective clay particle, Polymer, 45 2 (2004) 487-506.

DOI: 10.1016/j.polymer.2003.10.100

Google Scholar

[6] A. V. Eletsky, Mechanical properties of carbon nanotubes, Uspekhi Fizicheskikh Nauk, 177 3 (2007) 223-274.

Google Scholar

[7] A. Kh. Malamatov, G. V. Kozlov, A. K. Mikitaev, Reinforcement Mechanisms of Polymer Nanocomposites, Publichers D.I. Mendeleev RKhTU, Moscow, (2006).

Google Scholar

[8] A. N. Bobryshev, V. N. Kozomazov, L. O. Babin, V. I. Solomatov, Synergetics of Composite Materials, NPO ORIUS, Lipetsk, (1994).

Google Scholar

[9] L. M. Brady, R. C. Ball, Fractal growth of copper electrodeposits, Nature, 309 5965 (1984) 225-229.

DOI: 10.1038/309225a0

Google Scholar

[10] V. N. Shogenov, G. V. Kozlov, Fractal Clusters in Physics-Chemistry of Polymers, Polygraphservice and Co., Nal'chik, (2002).

Google Scholar

[11] P. Meakin, Diffusion limited aggregation on two-dimensional percolation clusters, Phys. Rev. B, 29 8 (1984) 4327-4330.

DOI: 10.1103/physrevb.29.4327

Google Scholar

[12] P. Meakin, Effects cluster trajectories on cluster-cluster aggregation: A comparison of linear and Brownian trajectories in two and three-dimensional simulations, Phys. Rev. A, 29 2 (1984) 997-999.

DOI: 10.1103/physreva.29.997

Google Scholar

[13] M. Matsushita, K. Honda, H. Toyoki, Y. Hayakawa, Generalization and the fractal dimensionality of diffusion-limited aggregation, J. Phys. Soc. Japan, 55 8 (1986) 2618-2626.

DOI: 10.1143/jpsj.55.2618

Google Scholar