Model of Controlled Drug Release from the Polymer Implant

Article Preview

Abstract:

A mathematical model for analysis of features of the drug release , previously introduced into a polymer implant, into a biological tissue is proposed. A carbon nanolayer obtained as a result of plasma-immersion ion implantation was created to improve biocompatibility with biological tissue on the surface of the implant. The medicine can go through micro-ruptures in this layer. Calculations show that the carbon layer allows a uniform release of the drug.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

139-147

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Siepmann, F. Siepmann, Mathematical modeling of drug delivery, INT J PHARM. 364 (2008) 328–343.

DOI: 10.1016/j.ijpharm.2008.09.004

Google Scholar

[2] J.H. Petropoulos, K.G. Papadokostaki, M. Sanopoulou, Higuchi's equation and beyond: Overview of the formulation and application of a generalized model of drug release from polymeric matrices, INT J PHARM. 437 (2012) 178–191.

DOI: 10.1016/j.ijpharm.2012.08.012

Google Scholar

[3] A.V. Kondyurin, M.F. Maitz, V.A. Romanova, V.P. Begishev, I.V. Kondyurina, R. Guenzel, Drug release form polyureaurethane coating modified by plasma immersion ion implantation J BIOMAT SCI-POLYM E. 15 (2004) 145–159.

DOI: 10.1163/156856204322793548

Google Scholar

[4] J.M. Schierholz, H. Steinhauser, A.F.E. Rump, R. Berkels, G. Pulverer, Controlled release of antibiotics from biomedical polyurethanes: morphological and structural features, BIOMAT. 18 (1997) 839–844.

DOI: 10.1016/s0142-9612(96)00199-8

Google Scholar

[5] J.Y. Cherng, T.Y. Hou, M.F. Shih, H. Talsma, W.E. Hennink, Polyurethane-based drug delivery systems, INT J PHARM. 450 (2013) 145–162.

DOI: 10.1016/j.ijpharm.2013.04.063

Google Scholar

[6] J. E. Adkins, Diffusion of fluids trough aeolotropic highly elastic solids, ARCH RATION MECH AN. 15 (1964) 222–234.

DOI: 10.1007/bf00275632

Google Scholar

[7] A. E. Green, P. M. Naghdi, A dinamical theory of interacting continua, Int. J. Eng. Sci. 3 (1965) 231–241.

Google Scholar

[8] A. L. Svistkov, Mechanical properties and mass transfer of viscoelastic deformable media, Int. J. Eng. Sci. 39 (2001) 1509–1532.

DOI: 10.1016/s0020-7225(01)00002-7

Google Scholar

[9] E. Ya. Denisyuk, Thermodynamics of deformation and swelling or crosslinked polymers under small deformations, POLYM SCI SER A+. 54 (2012) 240–247.

DOI: 10.1134/s0965545x12030017

Google Scholar

[10] M.L. Huggins, Theory of solutions of high polymers, J AM CHEM SOC. 64 (1942) 1712–1719.

Google Scholar

[11] J. Siepmann, F. Siepmann Modeling of diffusion controlled drug delivery, J. Controlled Release. 161 (2012) 351–362.

DOI: 10.1016/j.jconrel.2011.10.006

Google Scholar

[12] A. Wang, B.J. Edwards, Modeling controlled release from hollow porous nanospheres // INT J HEAT MASS TRAN. 103 (2016) 997–1007.

DOI: 10.1016/j.ijheatmasstransfer.2016.08.015

Google Scholar

[13] I.A. Morozov, A.S. Mamaev, I.V. Osorgina, A.Y. Beliaev, R.I. Izumov, T.E. Oschepkova, Soft polyurethanes treated by plasma immersion ion implantation: structural-mechanical properties of surface modified layer, J APPL POLYM SCI. (2017).

DOI: 10.1002/app.45983

Google Scholar