On the Possibility of Using Epoxy Prepregs for Carcass-Inflatable Nanosatellite Antennas

Article Preview

Abstract:

The possibility of using epoxy prepregs (fabric impregnated with epoxy resin) for carcass-inflatable antennas on space nanosatellites was investigated. It is shown that the optimal method of obtaining such devices is the use of reactive mixtures of hot cure, when the chemical reaction of curing of antenna deployed in space occurs under the action of solar radiation. In this case, the antenna is put into orbit in the nanosatellite in a compact form and no additional mechanisms are needed to give it the final working shape. The rheological properties of the mixture of epoxy resin YD-128 with hardener TEAT-1, suitable for making hot-curing prepregs and its use in near-earth orbit, are investigated. The dependence of rheological properties on temperature, hardener concentration and curing time is established. With the help of computer simulation, the temperature is calculated, to which the antenna carcass can be heated in near-earth orbit under the influence of thermal radiation from the Sun and the Earth taking into account its orientation in relation to the sources of heat. It is established that the process of hot curing of the antenna is possible due to solar and terrestrial radiation only when the frame is covered with a thin metallized layer that is close in characteristics to the layer of aluminum foil.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

156-163

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.V. Lopatin, M.A. Rutkovskaya, Overview of the designs of modern transformed space antennas (Part 1), Bulletin of the Siberian State Aerospace University. 15 (2007) 51-57.

Google Scholar

[2] A.V. Lopatin, M.A. Rutkovskaya, Overview of the designs of modern transformed space antennas (Part 2), Bulletin of the Siberian State Aerospace University. 16 (2007) 78-81.

Google Scholar

[3] S.D. Guest, S. Pellegrino, A new concept for solid surface deployable antennas, Acta Astronautica. 38 (1996) 103-113.

DOI: 10.1016/0094-5765(96)00009-4

Google Scholar

[4] P.N. Keller, M.S. Lake, D.Codell, R. Barrett, R. Taylor, M.R. Schultz, Development of elastic memory composite stiffeners for a flexible precision reflector, 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Newport, USA. (2006).

DOI: 10.2514/6.2006-2179

Google Scholar

[5] F. Jensen, S. Pellegrino, Expandable structures formed by hinged plates, Fifth International Conference on Space Structures: University of Surrey, UK. (2002) 1-10.

DOI: 10.1680/ss5v1.31739.0028

Google Scholar

[6] V.N. Zimin, Modeling of the dynamics of the expansion of space structures of the truss type, Polet, No 10 (2008) 42-48.

Google Scholar

[7] A.G. Tibert, Optimal design of tension truss antennas, AIAA Papers, 1629 (2003) 1-11.

Google Scholar

[8] A.S. Evdokimov, S.V. Ponomarev, Computer modeling of mechanical and radiotechnical characteristics of large-sized cosmic reflectors, Vestnik NSU, Ser. Physics. 2 (2007), 81-86.

Google Scholar

[9] G.G. Reibaldi, M.C. Bernasconi, QUASAT program: the ESA reflector, Acta Astronautica. No 4 15 (1987) 181-187.

DOI: 10.1016/0094-5765(87)90018-x

Google Scholar

[10] S.V. Ponomarev, Transformable reflectors spacecraft antennas, Bulletin of TSU Mathematics and mechanics. 16 (2011) 110-119.

Google Scholar

[11] A.P. Zhukov, V. S. Ponomarev, S.V. Ponomarev, Modeling of the space reflector with flexible ribs, // Proceedings of higher educational institutions, Physics. No 7/3 56 (2013) 149-151.

Google Scholar

[12] T. Buhl, F.V. Jensen, S. Pellegrino, Shape optimization of cover plates for retractable roof structures, Computers and Structures. No 82 (2004) 1227-1236.

DOI: 10.1016/j.compstruc.2004.02.021

Google Scholar

[13] A. Babuscia, B. Corbin, M. Knapp, R. Jensen-Clem, M. VandeLoo, S. Seager, Inflatable antenna for cubesats: Motivation for development and antenna design, Acta Astronautica. 91 (2013) 322-332.

DOI: 10.1016/j.actaastro.2013.06.005

Google Scholar

[14] A. Babuscia, M. Corbin, M. Van de Loo, Q.J. Wei, S. Pan, S. Mohan, S. Seager, Inflatable antenna or cubesat: fabrication, deployment and results of experimental tests, IEEE Aerospace Conference. (2014) 1-11.

DOI: 10.1109/aero.2014.7024296

Google Scholar

[15] A. Babuscia, T. Choi, K.-M. Cheung, J. Thangavelautham, M. Ravichandran, A. Chandra, Inflatable antenna for cubesat: extension of the previously developed S-band design to the X-band, AIAA SPACE 2015 Conference and Exposition. (2015) 1-13.

DOI: 10.2514/6.2015-4654

Google Scholar

[16] R.E. Freeland, G. Bilyeu, In-step inflatable antenna experiment, Acta Astronautica. 30 (1993) 29-40.

DOI: 10.1016/0094-5765(93)90098-h

Google Scholar

[17] R.E. Freeland, G. Bilyeu, G.R. Veal, Development of flight hardware for a large, inflatable-deployable antenna experiment, Acta Astronautica. 38 (1996) 251-260.

DOI: 10.1016/0094-5765(96)00030-6

Google Scholar

[18] R.E. Freeland, G. Bilyeu, G.R. Veal, M.D. Steiner , D.E. Carson, Large inflatable deployable antenna flight experiment results, Acta Astronautica. 41 (1997) 267-277.

DOI: 10.1016/s0094-5765(98)00057-5

Google Scholar

[19] N. Mathers, L. Thompson, Using inflatable antennas for portable satellite-based personal, communications systems, Acta Astronautica. 61 (2007) 659-663.

DOI: 10.1016/j.actaastro.2006.11.016

Google Scholar

[20] A.V. Bel'kov, F.I. Velichko, S.V. Ponomarev, V.A. Solonenko, Modeling an inflatable space reflector, Bulletin of Siberian State Aerospace University. No 3 29 (2010) 115-118.

Google Scholar

[21] A.V. Bel'kov, V.G. Butov, A.S. Evdokimov, Computer modeling of transformable cosmic reflectors, Bulletin of KazNU. Al-Farabi. Ser. Mathematics, mechanics, computer science, 16 (2011) 110-119.

Google Scholar

[22] Y. Xu, F. Guan, Structure design and mechanical measurement of inflatable antenna, Acta Astronautica. 76 (2012) 13-25.

DOI: 10.1016/j.actaastro.2012.02.005

Google Scholar

[23] B. San, Q. Yang, L. Yin, Stochastic and sensitivity analysis of shape error of inflatable antenna reflectors, Acta Astronautica. 132 (2017) 170-176.

DOI: 10.1016/j.actaastro.2016.12.015

Google Scholar

[24] A. Kondyurin, K. Kostarev, M. Bagara, Polymerization processes of epoxy plastic in simulated free space conditions, Acta Astronautica. No2-3 48 (2001) 109-113.

DOI: 10.1016/s0094-5765(00)00147-8

Google Scholar

[25] K.E. Trenberth, J.T. Fasullo, J. Kiehl, Earth's global energy budget, Bulletin of the American Meteorological Society. 90 (2009) 311-323.

DOI: 10.1175/2008bams2634.1

Google Scholar