Effect of Al Content on Microstructure and Properties of AlxMoNbTiV RCCA’s Alloys

Article Preview

Abstract:

The objective of this study is the evaluation of high entropy alloys for aeroengines applications up to 1000°C. AlxNbMoTiV alloys with 10 and 20 at.% Al have been produced by arc melting. As-cast microstructure and phase transformations during heat treatments have been investigated through SEM, DRX and TEM, revealing the possibility of homogenization at 1400°C and the stability of the BCC structure at 1000°C and 800°C for both alloys. Mechanical properties have been evaluated through micro-hardness and compression tests up to 800°C. It appears that, although both alloys show a similar microstructure and hardness evolution with heat treatment, the Alloy containing 10 at.% of Al show a higher yield strength at room temperature and 800°C, related to the brittle character of the alloy containing 20 at.% of Al.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] S. Gorsse, D.B. Miracle and O.N. Senkov, Mapping the world of complex concentrated alloys, Acta Materialia 135 (2017) 177-187.

DOI: 10.1016/j.actamat.2017.06.027

Google Scholar

[2] D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Materialia 122 (2017) 448-511.

DOI: 10.1016/j.actamat.2016.08.081

Google Scholar

[3] N.D. Stepanov, D.G. Shaysultanov, G.A. Salishchev and M.A. Tikhonovsky, Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy, Materials Letters 142 (2015) 153-155.

DOI: 10.1016/j.matlet.2014.11.162

Google Scholar

[4] O.N. Senkov, S.V. Senkova, C. Woodward and D.B. Miracle, Low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system : Microstructure and phase analysis, Acta Materialia 61 (2013) 1545-1557.

DOI: 10.1016/j.actamat.2012.11.032

Google Scholar

[5] O.N. Senkov, S.V. Senkova and C. Woodward, Effect of aluminium on the microstructure and properties of two refractory high entropy alloys, Acta Materialia 68 (2014) 214-228.

DOI: 10.1016/j.actamat.2014.01.029

Google Scholar

[6] O.N. Senkov, G.B. Wilks, J.M. Scott and D.B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics 19 (2011) 698-706.

DOI: 10.1016/j.intermet.2011.01.004

Google Scholar

[7] C. Li, C.J. Li, M. Zhao and Q. Jiang, Effect of aluminium contents on microstructure and properties of AlxCoCrFeNi alloys, Journal of alloys and Compounds 504S (2010) S515-S518.

DOI: 10.1016/j.jallcom.2010.03.111

Google Scholar

[8] J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh and Z.P. Lu, Effect of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high entropy alloy system, Acta Materialia 62 (2014) 105-113.

DOI: 10.1016/j.actamat.2013.09.037

Google Scholar

[9] J.P. Couzinié, G. Dirras, L. Perrière, T. Chauveau, E. Leroy, Y. Champion and I. Guillot, Microstructure of a near-equimolar refractory high entropy alloy, Materials Letters 126 (2014) 285-287.

DOI: 10.1016/j.matlet.2014.04.062

Google Scholar

[10] X. Yang, Y. Zhang and P.K. Liaw, Microstructure and compressive properties of NbTiVTaAlx High entropy alloys, Procedia Engineering 36 (2012) 292-298.

DOI: 10.1016/j.proeng.2012.03.043

Google Scholar