Yb: YAG Laser Welding of Aeronautical Alloys

Article Preview

Abstract:

Interest in the use of laser technology is growing in the aeronautical sector. The implementation of new Yb: YAG solid laser sources and new optical generations (dynamic focal length; 2in1 fiber: Fiber core and ring core) offers advantages in terms of quality, accuracy, reproducibility and weld dimensions. The LASER beam Yb: YAG of these new sources is generated, no longer from a bar of yttrium-aluminum garnet but from a disk. Moreover, a top-hat shaped power distribution and a top-hat shaped power distribution with a sharply limited recess in the center (ring structure) may be at the focal point using respectively the inner fiber and the coaxial fiber. These technological innovations offer new possibilities for cutting and welding of sheet metal parts. The welding domains of EN AW-6061 aluminum alloy, Commercial Purity Titanium - Grade 2 (T40), AISI 321 stainless steel alloy, nickel based Hastelloy X and Inconel 625 and cobalt based Haynes 188 superalloys are defined according to process parameters such as power density, focal diameter, welding speed and fiber type. Optimal welding parameters are determined for each alloy. The evolution of the microstructures and the mechanical properties of each zone of the welds are explained according to the power density, the heat input energy and the welding speed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1099-1104

Citation:

Online since:

December 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.C. Chatervedi, (Ed.), Welding and joining of aerospace materials, Woodhead Publishing in materials. Woodhead Publishing, Cambridge, UK : Philadelphia, PA. (2012).

Google Scholar

[2] A.A. Gialos, V. Zeimpekis, N.D. Alexopoulos, N. Kashaev, S. Riekehr, and A. Karanika, Investigating the impact of sustainability in the production of aeronautical subscale components. J. Clean. Prod. 176, (2018) 785–799.

DOI: 10.1016/j.jclepro.2017.12.151

Google Scholar

[3] A.Giesen, and Speiser J., Fifteen Years of Work on Thin-Disk Lasers: Results and Scaling Laws. IEEE J. Sel. Top. Quantum Electron. 13, (2007) 598–609.

DOI: 10.1109/jstqe.2007.897180

Google Scholar

[4] G. Verhaeghe, and B. Dance, An assessment of the welding performance of high-brightness lasers and a comparison with in-vacuum electron beams,.Proc. Int. Conf of Appl. of Lasers and Electro-Opt., ICALEO, Temecula, USA, (2008) 406–414.

DOI: 10.2351/1.5061340

Google Scholar

[5] ASM website : http://www.aerospacemetals.com/index.html.

Google Scholar

[6] M. Lesty, Une nouvelle approche dans le choix des régresseurs de la régression multiple en présence d'interactions et de colinéarités. La revue de Modulad 22 (1999) 39-77.

Google Scholar

[7] J. Graneix, J.-D. Beguin, J. Alexis, and T. Masri, Influence of Yb: YAG Laser Beam Parameters on Haynes 188 Weld Fusion Zone Microstructure and Mechanical Properties. Metall. Mater. Trans. B 48, (2017).

DOI: 10.1007/s11663-017-0989-6

Google Scholar

[8] J.Graneix, J.-D. Beguin, F. Pardheillan, J. Alexis, and T. Masri, Weldability of the superalloys Haynes 188 and Hastelloy X by Nd:YAG. MATEC Web Conf. 14, (2014) 13006.

DOI: 10.1051/matecconf/20141413006

Google Scholar

[9] L. Quintino, E. Assunção, Conduction laser welding, Handbook of Laser Welding Technologies, Woodhead Publishing Cambridge, UK: Philadelphia, PA. (2013) 139-162.

DOI: 10.1533/9780857098771.1.139

Google Scholar

[10] J. F. Ready, Industrial applications of Lasers, Academic press, New York (1997).

Google Scholar

[11] Graneix, J. Étude du soudage laser Yb: YAG homogène et hétérogène des superalliages Hastelloy X et Haynes 188, thesis Université de Toulouse (2015).

Google Scholar