[1]
M.J. Donachie, Titanium: A Technical Guide, 2nd ed., ASM International, Materials Park, OH, (2000).
Google Scholar
[2]
H. Chandler, Heat Treater's Guide: Practices and Procedures for Nonferrous Alloys, ASM International, Materials Park, OH, (1996).
Google Scholar
[3]
R.R. Boyer, G. Welsch, E.W. Collings, Materials Properties Handbook: Titanium Alloys, ASM International, Materials Park, OH, (1994).
Google Scholar
[4]
A.P. Singh, F. Yang, R. Torrens, B. Gabbitas, Solution treatment of Ti-6Al-4V alloy produced by consolidating blended powder mixture using a powder compact extrusion route, Materials Science and Engineering: A 712 (2018) 157-165.
DOI: 10.1016/j.msea.2017.11.098
Google Scholar
[5]
ASM Aerospace Specification Metals, Titanium Ti-6Al-4V (Grade 5), Annealed. <http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MTP641>, n.d. (accessed 4 November.2015).
Google Scholar
[6]
S. Zherebtsov, E. Kudryavtsev, S. Kostjuchenko, S. Malysheva, G. Salishchev, Strength and ductility-related properties of ultrafine grained two-phase titanium alloy produced by warm multiaxial forging, Materials Science and Engineering A - Structural Materials Properties Microstructure and Processing 536 (2012) 190-196.
DOI: 10.1016/j.msea.2011.12.102
Google Scholar
[7]
R.W. Armstron, Influence of polycrystal grain size on several mechanical properties of materials, Metallurgical Transactions 1(5) (1970) 1169-1176.
DOI: 10.1007/bf02900227
Google Scholar
[8]
G. Lütjering, Influence of processing on microstructure and mechanical properties of (α+ β) titanium alloys, Materials Science and Engineering A 243(1) (1998) 32-45.
DOI: 10.1016/s0921-5093(97)00778-8
Google Scholar
[9]
X.H. Shi, W.D. Zeng, Y. Sun, Y.F. Han, Y.Q. Zhao, P. Guo, Microstructure-tensile properties correlation for the Ti-6Al-4V titanium alloy, Journal of Materials Engineering and Performance 24(4) (2015) 1754-1762.
DOI: 10.1007/s11665-015-1437-x
Google Scholar
[10]
D. Eylon, F.H. Froes, S. Abkowitz, Titanium powder metallurgy alloys and composites, in: P.W. Lee, B.L. Ferguson (Eds.), Powder Metal Technologies and Applications (ASM Metals Handbook), ASM International, Materials Park, OH, 1998, pp.2192-2231.
Google Scholar
[11]
D.J. McEldowney, S. Tamirisakandala, D.B. Miracle, Heat-treatment effects on the microstructure and tensile properties of powder metallurgy Ti-6Al-4V alloys modified with boron, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 41A(4) (2010) 1003-1015.
DOI: 10.1007/s11661-009-0157-y
Google Scholar
[12]
J.D.K. Rivard, C.A. Blue, D.C. Harper, J.O. Kiggans, P.A. Menchhofer, J.R. Mayotte, L. Jacobsen, D. Kogut, The thermomechanical processing of titanium and Ti-6Al-4V thin gage sheet and plate, JOM: Journal of the Minerals, Metals and Materials Society 57(11) (2005) 58-61.
DOI: 10.1007/s11837-005-0029-x
Google Scholar
[13]
A.P. Singh, B. Gabbitas, F. Yang, R. Torrens, A. Mukhtar, Effect of Pre-Consolidation Methods and Oxygen on the mechanical Properties of As-Extruded Ti-6Al-4V Alloy Rod, Proceedings of the 13th World Conference on Titanium, John Wiley & Sons, Inc.2016, pp.1347-1354.
DOI: 10.1002/9781119296126.ch228
Google Scholar
[14]
L.W. Meyer, L. Krüger, K. Sommer, T. Halle, M. Hockauf, Dynamic strength and failure behavior of titanium alloy Ti-6Al-4V for a variation of heat treatments, Mechanics of Time-Dependent Materials 12(3) (2008) 237-247.
DOI: 10.1007/s11043-008-9060-y
Google Scholar