[1]
G. Lütjering, J. C. Williams, Titanium, Springer-Verlag, Berlin, (2003).
Google Scholar
[2]
F. Wen-bin, F. Wa, and S. Hong-fei, Preparation of high-strength Mg–3Al–Zn alloy with ultrafine-grained microstructure by powder metallurgy, Powder Technol., 212 (2011) 161-165.
DOI: 10.1016/j.powtec.2011.05.006
Google Scholar
[3]
J. Kozlík, J. Stráský, P. Harcuba, I. Ibragimov, T. Chráska, M. Janeček, Cryogenic Milling of Titanium Powder, Metals, 8 (2018) 31.
DOI: 10.3390/met8010031
Google Scholar
[4]
R. Schmidt, S. Pilz, I. Lindemann, C. Damm, A. Helth, D. Geissler, A. Henss, M. Rohnke, M. Calin, M. Zimmermann, J. Eckert, M. H. Lee, A. Gebert, Powder metallurgical processing of low modulus β-type Ti-45Nb to bulk and macro-porous compacts, Powder Technol., 322 (2017) 393–401.
DOI: 10.1016/j.powtec.2017.09.015
Google Scholar
[5]
C. Suryanarayana, Mechanical alloying and milling, Prog. Mater. Sci., 46 (2001) 1–184.
Google Scholar
[6]
A. Miklaszewski, D. Garbiec, and K. Niespodziana, Sintering behavior and microstructure evolution in cp-titanium processed by spark plasma sintering, Adv. Powder Technol., 29 (2018) 50–57.
DOI: 10.1016/j.apt.2017.10.010
Google Scholar
[7]
O. Ertorer, T. D. Topping, Y. Li, W. Moss, and E. J. Lavernia, Nanostructured Ti Consolidated via Spark Plasma Sintering, Metall. Mater. Trans. A, 42 (2011) 964–973.
DOI: 10.1007/s11661-010-0499-5
Google Scholar
[8]
O. Guillon, J. Gonzalez-Julian, B. Dargatz, T. Kessel, G. Schierning, J. Räthel, M. Herrmann, Field-Assisted Sintering Technology/Spark Plasma Sintering: Mechanisms, Materials, and Technology Developments, Adv. Eng. Mater., 16 (2014) 830–849.
DOI: 10.1002/adem.201300409
Google Scholar
[9]
W. H. Yin, F. Xu, O. Ertorer, Z. Pan, X. Y. Zhang, Mechanical behavior of microstructure engineered multi-length-scale titanium over a wide range of strain rates, Acta Mater., 61 (2013) 3781–3798.
DOI: 10.1016/j.actamat.2013.03.011
Google Scholar
[10]
D. B. Witkin, E. J. Lavernia, Synthesis and mechanical behavior of nanostructured materials via cryomilling, Prog. Mater. Sci., 51 (2006) 1–60.
DOI: 10.1016/j.pmatsci.2005.04.004
Google Scholar
[11]
T. Furuhara, Role of defects on microstructure development of beta titanium alloys, Met. Mater., 6 (2000) 221–224.
Google Scholar
[12]
F. Sun, P. Rojas, A. Zúñiga, E. J. Lavernia, Nanostructure in a Ti alloy processed using a cryomilling technique, Mater. Sci. Eng. A, 430 (2006) 90–97.
DOI: 10.1016/j.msea.2006.05.136
Google Scholar
[13]
K. Václavová, J. Stráský, V. Polyakova, J. Stráská, J. Nejezchlebová, H. Seiner, I. Semenova, M. Janeček, Microhardness and microstructure evolution of ultra-fine grained Ti-15Mo and TIMETAL LCB alloys prepared by high pressure torsion, Mater. Sci. Eng. A, 682 (2017) 220–228.
DOI: 10.1016/j.msea.2016.11.038
Google Scholar