Development and Properties of Cast TiAl Matrix In Situ Composites Reinforced with Carbide Particles

Article Preview

Abstract:

The In Situ composites with microstructurally different types of intermetallic matrix such as nearly γ (TiAl) (composite A), multiphase with high amount of lamellar α2(Ti3Al) + γ (TiAl) regions (composite B) and fully lamellar α2 + γ (composite C) were prepared by centrifugal casting and consecutive heat treatments of Ti-44.5Al-8Nb-0.8Mo-3.6C-0.1B, Ti-37Al-7Nb-0.8Mo-5.9C-0.1B and Ti-46.4Al-5Nb-1C-0.2B (at.%) alloys, respectively. The centrifugal casting results in a uniform distribution of coarse primary carbide particles in the as-cast samples. Hot isostatic pressing (HIP) and heat treatments have no effect on the Vickers hardness of the in-situ composite B but lead to a significant softening of the in-situ composites A and C. The in-situ composite C with a coarse-grained fully lamellar matrix shows a higher flow stress at 1000 °C and improved creep resistance at 800 °C compared to those of the in-situ composites A and B.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1907-1913

Citation:

Online since:

December 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B.P. Bewlay, S. Nag, A. Suzuki, M.J. Weimer, TiAl alloys in commercial aircraft engines, Mater. High Temp. 33 (2016) 549–559.

DOI: 10.1080/09603409.2016.1183068

Google Scholar

[2] W. Shouren, G. Peiquan, Y. Liying, Centrifugal precision cast TiAl turbocharger wheel using ceramic mold, J. Mater. Process. Technol. 204 (2008) 492–497.

DOI: 10.1016/j.jmatprotec.2008.01.062

Google Scholar

[3] J. Lapin, T. Pelachová, M. Dománková, Long-term creep behaviour of cast TiAl-Ta alloy, Intermetallics 95 (2018) 24–32.

DOI: 10.1016/j.intermet.2018.01.013

Google Scholar

[4] X. Song, H. Cui, Y. Han, N. Hou, N. Wei, L. Ding, Q. Song, Effect of carbon reactant on microstructures and mechanical properties of TiAl/Ti2AlC composites, Mater. Sci. Eng. A 684 (2017) 406–412.

DOI: 10.1016/j.msea.2016.12.069

Google Scholar

[5] J. Lapin, A. Klimová, Z. Gabalcová, T. Pelachová, O. Bajana, M. Š, Microstructure and mechanical properties of cast in-situ TiAl matrix composites reinforced with (Ti,Nb)2AlC particles, Mater. Design 133 (2017) 404–415.

DOI: 10.1016/j.matdes.2017.08.012

Google Scholar

[6] A. Klimová, J. Lapin, T. Pelachová, Characterization of TiAl based alloys with various content of carbon, in: IOP Conf. Ser. Mater. Sci. Eng., 2017.

DOI: 10.1088/1757-899x/179/1/012038

Google Scholar

[7] E. Schwaighofer, P. Staron, B. Rashkova, A. Stark, N. Schell, H. Clemens, S. Mayer, In situ small-angle X-ray scattering study of the perovskite-type carbide precipitation behavior in a carbon-containing intermetallic TiAl alloy using synchrotron radiation, Acta Mater. 77 (2014) 360–369.

DOI: 10.1016/j.actamat.2014.06.017

Google Scholar

[8] T. Cegan, I. Szurman, Thermal stability and precipitation strengthening of fully lamellar Ti-45Al-5Nb-0.2B-0.75C alloy, Kovove Mater. 55 (2017) 421–430.

DOI: 10.4149/km_2017_6_421

Google Scholar

[9] E. Schwaighofer, B. Rashkova, H. Clemens, A. Stark, S. Mayer, Effect of carbon addition on solidification behavior, phase evolution and creep properties of an intermetallic β-stabilized g-TiAl based alloy, Intermetallics 46 (2014) 173–184.

DOI: 10.1016/j.intermet.2013.11.011

Google Scholar