[1]
X. Li, G. Zu, P. Wang, Microstructural development and its effects on mechanical properties of Al/Cu laminated composite, Trans. Nonferrous Met. Soc. China. 25 (2015) 36–45.
DOI: 10.1016/s1003-6326(15)63576-2
Google Scholar
[2]
L.Y. Sheng, F. Yang, T.F. Xi, C. Lai, H.Q. Ye, Influence of heat treatment on interface of Cu/Al bimetal composite fabricated by cold rolling, Compos. Part B Eng. 42 (2011) 1468–1473.
DOI: 10.1016/j.compositesb.2011.04.045
Google Scholar
[3]
M.R. Toroghinejad, R. Jamaati, J. Dutkiewicz, J.A. Szpunar, Investigation of nanostructured aluminum/copper composite produced by accumulative roll bonding and folding process, Mater. Des. 51 (2013) 274–279.
DOI: 10.1016/j.matdes.2013.04.002
Google Scholar
[4]
H.T. Gao, X.H. Liu, J.L. Qi, Z.R. Ai, L.Z. Liu, Microstructure and mechanical properties of Cu/Al/Cu clad strip processed by the powder-in-tube method, J. Mater. Process. Technol. 251 (2018) 1–11.
DOI: 10.1016/j.jmatprotec.2017.07.035
Google Scholar
[5]
A. Abdollah-Zadeh, T. Saeid, B. Sazgari, Microstructural and mechanical properties of friction stir welded aluminum/copper lap joints, J. Alloys Compd. 460 (2008) 535–538.
DOI: 10.1016/j.jallcom.2007.06.009
Google Scholar
[6]
E.C. Jordan, K.G. Balmain, Electromagnetic waves and radiating systems, 2. ed, Prentice-Hall, Englewood Cliffs, NJ, 1968 p.130.
Google Scholar
[7]
W. Głuchowski, Z. Rdzawski, J. Domagała-Dubiel, J. Sobota, Microstructure and Properties of Multifibre Composites, Arch. Metall. Mater. 61 (2016).
DOI: 10.1515/amm-2016-0154
Google Scholar
[8]
R. Kocich, L. Kunčická, A. Macháčková, M. Šofer, Improvement of mechanical and electrical properties of rotary swaged Al-Cu clad composites, Mater. Des. 123 (2017) 137–146.
DOI: 10.1016/j.matdes.2017.03.048
Google Scholar
[9]
W.-B. Lee, K.-S. Bang, S.-B. Jung, Effects of intermetallic compound on the electrical and mechanical properties of friction welded Cu/Al bimetallic joints during annealing, J. Alloys Compd. 390 (2005) 212–219.
DOI: 10.1016/j.jallcom.2004.07.057
Google Scholar
[10]
A. Gueydan, B. Domengès, E. Hug, Study of the intermetallic growth in copper-clad aluminum wires after thermal aging, Intermetallics. 50 (2014) 34–42.
DOI: 10.1016/j.intermet.2014.02.007
Google Scholar
[11]
C. Macchioni, J.A. Rayne, S. Sen, C.L. Bauer, Low temperature resistivity of thin film and bulk samples of CuAl2 and Cu9Al4, Thin Solid Films. 81 (1981) 71–78.
DOI: 10.1016/0040-6090(81)90506-x
Google Scholar
[12]
C.D. Yang, W. Li, W. Zhi, Study on mechanical behavior and electronic structures of Al–Cu intermetallic compounds based on first-principles calculations, Solid State Commun. 151 (2011) 1270–1274.
DOI: 10.1016/j.ssc.2011.05.040
Google Scholar
[13]
E. Hug, N. Bellido, Brittleness study of intermetallic (Cu, Al) layers in copper-clad aluminium thin wires, Mater. Sci. Eng. A. 528 (2011) 7103–7106.
DOI: 10.1016/j.msea.2011.05.077
Google Scholar
[14]
J. Nguyen, F. Douville, O. Bouaziz, X. Sauvage, Low weight steel-magnesium composites achieved by powder compaction, Mater. Sci. Eng. A. 660 (2016) 77–83.
DOI: 10.1016/j.msea.2016.02.083
Google Scholar