Temperature Dependent Mechanical Behavior of ODS Steels

Article Preview

Abstract:

An oxide dispersion strengthened (ODS) ferritic steel with nanometric grain size has been produced by means of low-energy mechanical alloying (LEMA) of steel powder (Fe-14Cr-1W-0.4Ti) mixed with Y2O3 particles (0.3 wt%) and successive hot extrusion (HE). The material has equiaxed grains (mean size of 400 nm) and dislocation density of 4 x 1012 m-2, and exhibits superior mechanical properties with respect the unreinforced steel. The mechanical behavior has been compared with that of ODS steels prepared by means of the most common process, high-energy mechanical alloying (HEMA), consolidation through hot isostatic pressing (HIP) or hot extrusion (HE), annealing around 1100 °C for 1-2 hours, which produces a bimodal grain size distribution. The strengthening mechanisms have been examined and discussed to explain the different behavior.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

257-262

Citation:

Online since:

December 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Ukai, M. Fujiwara, Perspective of ODS alloys application in nuclear environments, J. Nucl. Mater. 307–311 (2002) 749–757.

DOI: 10.1016/s0022-3115(02)01043-7

Google Scholar

[2] G.R. Odette, On the status and prospects for nanostructured ferritic alloys for nuclear fission and fusion application with emphasis on the underlying science, Scripta Materialia, 143 (2018) 142-148.

DOI: 10.1016/j.scriptamat.2017.06.021

Google Scholar

[3] S.J. Zinkle, J.L. Boutard, D.T. Hoelzer, A. Kimura, R. Lindau, G.R. Odette, M. Rieth, L. Tan, H. Tanigawa, Development of next generation tempered and ODS reduced activation ferritic/martensitic steels for fusion energy applications, Nuclear Fusion, 57 (2017) 1-17.

DOI: 10.1088/1741-4326/57/9/092005

Google Scholar

[4] J. Malaplate, F. Mompiou, J.-L. Béchade, T. Van Den Berghe, M. Ratti, Creep behavior of ODS materials: A study of dislocations/precipitates interactions, 417 (2011) 205-208.

DOI: 10.1016/j.jnucmat.2010.12.059

Google Scholar

[5] J.H. Lee, R.Kasada, A.Kimura, T.Okuda, M.Inoue, S.Ukai, S.Ohnuki, T.Fujisawa, F.Abe, Influence of alloy composition and temperature on corrosion behavior of ODS ferritic steels, J. Nucl. Mater. 417 (2011) 1225-1228.

DOI: 10.1016/j.jnucmat.2010.12.279

Google Scholar

[6] M. Klimenkov, R. Lindau, U. Jäntsch, A. Möslang, Effect of irradiation temperature on microstructure of ferritic-martensitic ODS steel, J. Nucl. Mater. 493 (2017) 426-435.

DOI: 10.1016/j.jnucmat.2017.06.024

Google Scholar

[7] V. De Castro, T. Leguey, M.A. Auger, S. Lozano-Perez, M.L. Jenkins, Analytical characterization of secondary phases and void distributions in an ultrafine-grained ODS Fe-14Cr model alloy, J. Nucl. Mater. 417 (2011) 217–220.

DOI: 10.1016/j.jnucmat.2010.12.067

Google Scholar

[8] V. De Castro, T. Leguey, A. Muñoz, M.A. Monge, P. Fernández, A.M. Lancha, R. Pareja, Mechanical and microstructural behavior of Y2O3 ODS EUROFER 97, J. Nucl. Mater. 367–370 (2007) 196–201.

DOI: 10.1016/j.jnucmat.2007.03.146

Google Scholar

[9] M. De Sanctis, A. Fava, G. Lovicu, R. Montanari, M. Richetta, C. Testani, A. Varone, Mechanical Characterization of a Nano-ODS Steel Prepared by Low-Energy Mechanical Alloying, Metals 7 (2017) 1-12.

DOI: 10.3390/met7080283

Google Scholar

[10] G. Lovicu, A. Fava, R. Montanari, R. Pizzoferrato, M. Richetta, A. Varone, C. Testani, ODS ferritic steel for nuclear reactors, Metallurgia Italiana 109 (2017) 59-67.

DOI: 10.3390/met7080283

Google Scholar

[11] Q. Li, Modeling the microstructure-mechanical property relationship for a 12Cr-2W-V-Mo-Ni power plant steel, Mater. Sci. Eng. A 361 (2003) 385–391.

DOI: 10.1016/s0921-5093(03)00565-3

Google Scholar

[12] J. Shen, Y. Li, F. Li, H. Yang, Z. Zhao, S. Kano, Y. Matsukawa, Y. Satoh, H. Abe, Microstructural characterization and strengthening mechanisms of a 12Cr-ODS steel, Mater. Sci. Eng. A 673 (2016) 624–632.

DOI: 10.1016/j.msea.2016.07.030

Google Scholar

[13] J.E. Bailey, P.B. Hirsch, The dislocation distribution, flow, stress, and stored energy in cold-worked polycrystalline silver, Philos. Mag. 5 (1960) 485-497.

DOI: 10.1080/14786436008238300

Google Scholar

[14] U.F. Kocks, The theory of an obstacle-controlled yield strength-Report after an international workshop, Mater. Sci. Eng. A 27 (1977) 291–298.

DOI: 10.1016/0025-5416(77)90212-9

Google Scholar

[15] M. Praud, F. Mompiou, J. Malaplate, D. Caillard, J. Garnier, A. Steckmeyer, B. Fournier, Study of the deformation mechanisms in a Fe-14% Cr ODS alloy, J. Nucl. Mater. 428 (2012) 90-97.

DOI: 10.1016/j.jnucmat.2011.10.046

Google Scholar

[16] J.H. Schneibel, M. Heilmaier, Hall-petch breakdown at elevated temperatures, Mater. Trans. 55 (2015) 44–51.

DOI: 10.2320/matertrans.ma201309

Google Scholar

[17] B. Reppich, On the attractive particle-dislocation interaction in dispersion-strengthened material. Acta Mater. 46 (1998) 61–67.

DOI: 10.1016/s1359-6454(97)00234-6

Google Scholar

[18] A. Steckmeyer, M. Praud, B. Fournier, J. Malaplate, J. Garnier, J.L. Béchade, I. Tournié, A. Tancray, Tensile properties and deformation mechanisms of a 14Cr ODS ferritic steel, 405 (2010) 95-100.

DOI: 10.1016/j.jnucmat.2010.07.027

Google Scholar

[19] M. Serrano, M. Hernández-Mayoral, A. García-Junceda, Microstructural anisotropy effect on the mechanical properties of a 14Cr ODS steel, J. Nucl. Mater. 428 (2012) 103–109.

DOI: 10.1016/j.jnucmat.2011.08.016

Google Scholar

[20] M.A. Auger, V.de Castro, T. Leguey, M.A. Monge, A. Muñoz, R. Pareja, Microstructure and tensile properties of oxide dispersion strengthened Fe–14Cr–0.3Y2O3 and Fe–14Cr–2W–0.3Ti–0.3Y2O3, Journal of Nuclear Materials, 442 (2013) 142-147.

DOI: 10.1016/j.jnucmat.2012.11.001

Google Scholar