Influence of Nb Addition on Impact Toughness of As-Quenched Martensitic Stainless Steel for Automotive Applications

Article Preview

Abstract:

This study presents how Nb addition allowed improving the Charpy impact toughness of a martensitic stainless steel by comparing a conventional AISI410 (12%Cr-0.1%C) and a 12%Cr-0.1%C-0.1%Nb steel after the same austenitization and quenching heat treatment. Adding niobium decreased the ductile-to-brittle transition temperature by 100°C with respect to the Nb-free steel. To identify quantitative fracture criteria for the two materials, the values of critical cleavage fracture stress were determined by the local approach to fracture, combining low temperature tensile tests on notched specimens and mechanical analysis by the finite element method. The main effects of niobium were to refine the grain size and to promote retained austenite films, resulting in a similar resistance to cleavage crack initiation but in a strong improvement of the ductile-to-brittle transition behavior by increasing the resistance to cleavage crack propagation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

245-250

Citation:

Online since:

December 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Badinier, J. B. Moreau, B. Petit, C. Boissy, J. D. Mithieux, S. Saedlou, J. Paegle, Development of Press Hardening Stainless Steels for Body-in-White Application, CHS2 conference Atlanta (2017).

Google Scholar

[2] P. O. Santacreu, G. Badinier, J. B. Moreau, J. M. Herbelin, Fatigue Properties of a New Martensitic Stainless Steel for Hot Stamped Chassis Parts, SAE Technical Papers (2015).

DOI: 10.4271/2015-01-0527

Google Scholar

[3] J. D. Mithieux, G. Badinier, P. O. Santacreu, J. M. Herbelin, V. Kostoj, Optimized Martensitic Stainless Steels for Hot Formed Parts in Automotive Crash Application, CHS2 conference Lulea (2013).

Google Scholar

[4] A. Grajcar, R. Kuziak, W. Zalecki, Third generation of AHSS with increased fraction of retained austenite for the automotive industry, Arch. Civ. Mech. Eng., vol. 12 no 3 (2012) 334‑341.

DOI: 10.1016/j.acme.2012.06.011

Google Scholar

[5] H. Wu, B. Ju, D. Tang, R. Hu, A. Guo, Q. Kang, D. Wang, Effect of Nb addition on the microstructure and mechanical properties of an 1800MPa ultrahigh strength steel, Mater. Sci. Eng. A, 622 (2015) 61‑66.

DOI: 10.1016/j.msea.2014.11.005

Google Scholar

[6] X. P. Ma, L. J. Wang, C. M. Liu, S. V. Subramanian, Microstructure and properties of 13Cr5Ni1Mo0.025Nb0.09V0.06N super martensitic stainless steel, Mater. Sci. Eng. A, 539 (2012) 271‑279.

DOI: 10.1016/j.msea.2012.01.093

Google Scholar

[7] S. Feld-Payet, J. Besson, F. Feyel, Finite element analysis of damage in ductile structures using a nonlocal model combined with a three-field formulation, Int. J. Damage Mech., 20 (2011) 655‑680.

DOI: 10.1177/1056789511405935

Google Scholar

[8] J. Zhang, H. Ding, R. D. K. Misra, C. Wang, Microstructural evolution and consequent strengthening through niobium-microalloying in a low carbon quenched and partitioned steel, Mater. Sci. Eng. A, 641 (2015) 242‑248.

DOI: 10.1016/j.msea.2015.06.050

Google Scholar

[9] S. C. Hong, S. H. Lim, H. S. Hong, K. J. Lee, D. H. Shin, K. S. Lee, Effects of Nb on strain induced ferrite transformation in C–Mn steel, Mater. Sci. Eng. A, vol. 355 no 1 (2003) 241‑248.

DOI: 10.1016/s0921-5093(03)00071-6

Google Scholar

[10] W. Bleck, A. Frehn, E. Kechagias, J. Ohlert, K. Hulka, Control of Microstructure in TRIP Steels by Niobium, Mater. Sci. Forum, 426‑432 (2003) 43‑48.

DOI: 10.4028/www.scientific.net/msf.426-432.43

Google Scholar

[11] J. W. Morris, C. Kinney, K. Pytlewski, Y. Adachi, Microstructure and cleavage in lath martensitic steels, Sci. Technol. Adv. Mater., vol. 14 no 1 (2013).

DOI: 10.1088/1468-6996/14/1/014208

Google Scholar

[12] A. Lambert-Perlade, T. Sturel, A. F. Gourgues, J. Besson, A. Pineau, Mechanisms and modeling of cleavage fracture in simulated heat-affected zone microstructures of a high-strength low alloy steel, Metall. Mater. Trans. A, vol. 35 no 3 (2004) 1039‑1053.

DOI: 10.1007/s11661-004-1007-6

Google Scholar

[13] C. Wang, M. Wang, J. Shi, W. Hui, H. Dong, Effect of microstructural refinement on the toughness of low carbon martensitic steel, Scr. Mater., vol. 58 no 6 (2008) 492‑495.

DOI: 10.1016/j.scriptamat.2007.10.053

Google Scholar

[14] J. Chen, W. N. Zhang, Z. Y. Liu, G. D. Wang, The role of retained austenite on the mechanical properties of a low carbon 3Mn-1.5Ni steel, Metall. Mater. Trans. A, vol. 48A (2017).

DOI: 10.1007/s11661-017-4362-9

Google Scholar