[1]
G. Badinier, J. B. Moreau, B. Petit, C. Boissy, J. D. Mithieux, S. Saedlou, J. Paegle, Development of Press Hardening Stainless Steels for Body-in-White Application, CHS2 conference Atlanta (2017).
Google Scholar
[2]
P. O. Santacreu, G. Badinier, J. B. Moreau, J. M. Herbelin, Fatigue Properties of a New Martensitic Stainless Steel for Hot Stamped Chassis Parts, SAE Technical Papers (2015).
DOI: 10.4271/2015-01-0527
Google Scholar
[3]
J. D. Mithieux, G. Badinier, P. O. Santacreu, J. M. Herbelin, V. Kostoj, Optimized Martensitic Stainless Steels for Hot Formed Parts in Automotive Crash Application, CHS2 conference Lulea (2013).
Google Scholar
[4]
A. Grajcar, R. Kuziak, W. Zalecki, Third generation of AHSS with increased fraction of retained austenite for the automotive industry, Arch. Civ. Mech. Eng., vol. 12 no 3 (2012) 334‑341.
DOI: 10.1016/j.acme.2012.06.011
Google Scholar
[5]
H. Wu, B. Ju, D. Tang, R. Hu, A. Guo, Q. Kang, D. Wang, Effect of Nb addition on the microstructure and mechanical properties of an 1800MPa ultrahigh strength steel, Mater. Sci. Eng. A, 622 (2015) 61‑66.
DOI: 10.1016/j.msea.2014.11.005
Google Scholar
[6]
X. P. Ma, L. J. Wang, C. M. Liu, S. V. Subramanian, Microstructure and properties of 13Cr5Ni1Mo0.025Nb0.09V0.06N super martensitic stainless steel, Mater. Sci. Eng. A, 539 (2012) 271‑279.
DOI: 10.1016/j.msea.2012.01.093
Google Scholar
[7]
S. Feld-Payet, J. Besson, F. Feyel, Finite element analysis of damage in ductile structures using a nonlocal model combined with a three-field formulation, Int. J. Damage Mech., 20 (2011) 655‑680.
DOI: 10.1177/1056789511405935
Google Scholar
[8]
J. Zhang, H. Ding, R. D. K. Misra, C. Wang, Microstructural evolution and consequent strengthening through niobium-microalloying in a low carbon quenched and partitioned steel, Mater. Sci. Eng. A, 641 (2015) 242‑248.
DOI: 10.1016/j.msea.2015.06.050
Google Scholar
[9]
S. C. Hong, S. H. Lim, H. S. Hong, K. J. Lee, D. H. Shin, K. S. Lee, Effects of Nb on strain induced ferrite transformation in C–Mn steel, Mater. Sci. Eng. A, vol. 355 no 1 (2003) 241‑248.
DOI: 10.1016/s0921-5093(03)00071-6
Google Scholar
[10]
W. Bleck, A. Frehn, E. Kechagias, J. Ohlert, K. Hulka, Control of Microstructure in TRIP Steels by Niobium, Mater. Sci. Forum, 426‑432 (2003) 43‑48.
DOI: 10.4028/www.scientific.net/msf.426-432.43
Google Scholar
[11]
J. W. Morris, C. Kinney, K. Pytlewski, Y. Adachi, Microstructure and cleavage in lath martensitic steels, Sci. Technol. Adv. Mater., vol. 14 no 1 (2013).
DOI: 10.1088/1468-6996/14/1/014208
Google Scholar
[12]
A. Lambert-Perlade, T. Sturel, A. F. Gourgues, J. Besson, A. Pineau, Mechanisms and modeling of cleavage fracture in simulated heat-affected zone microstructures of a high-strength low alloy steel, Metall. Mater. Trans. A, vol. 35 no 3 (2004) 1039‑1053.
DOI: 10.1007/s11661-004-1007-6
Google Scholar
[13]
C. Wang, M. Wang, J. Shi, W. Hui, H. Dong, Effect of microstructural refinement on the toughness of low carbon martensitic steel, Scr. Mater., vol. 58 no 6 (2008) 492‑495.
DOI: 10.1016/j.scriptamat.2007.10.053
Google Scholar
[14]
J. Chen, W. N. Zhang, Z. Y. Liu, G. D. Wang, The role of retained austenite on the mechanical properties of a low carbon 3Mn-1.5Ni steel, Metall. Mater. Trans. A, vol. 48A (2017).
DOI: 10.1007/s11661-017-4362-9
Google Scholar