[1]
Z.Y. Liu, S. Tang, J. Chen, et al. Latest progress on development and production of steels for offshore platform and their development tendency, J. ANGANG TECHNOLOGY, (2015)1-7.
Google Scholar
[2]
Y.R. Wen, A. Hirata, Z.W. Zhang et al. Microstructure characterization of Cu-rich nanoprecipitates in a Fe–2.5Cu–1.5Mn–4.0Ni–1.0Al multicomponent ferritic alloy, J. Acta Materialia. 61(2013) 2133-2147.
DOI: 10.1016/j.actamat.2012.12.034
Google Scholar
[3]
S. Vaynman, D. Isheim, R.P. Kolli, et al. High-strength low-carbon ferritic steel containing Cu-Fe-Ni-Al-Mn precipitates, J. Metallurgical and Materials Transactions A, 39(2008)363-373.
DOI: 10.1007/s11661-007-9417-x
Google Scholar
[4]
S. Vaynman, M.E. Fine, G. Ghosh, et al. Copper Precipitation Hardened, High Strength, Weldable Steel, J. Materials for The New Millennium, KP Chong (Ed.), Washington DC: ASCE, (1996)1551.
Google Scholar
[5]
S. Vaynman, M.E. Fine, R.I. Asfahani, et al. High performance copper-precipitation-hardened steel,C. Proceedings from Materials Solutions Conference, (2002)7-9.
Google Scholar
[6]
S.W. Thompson. Microstructural characterization of an as-quenched HSLA-100 plate steel via transmission electron microscopy, J. Materials Characterization,77(2013)89-98.
DOI: 10.1016/j.matchar.2013.01.002
Google Scholar
[7]
S.K. Ghosh, A. Haldar, P.P. Chattopadhyay. On the Cu precipitation behavior in thermomechanically processed low carbon microalloyed steels, J. Materials Science and Engineering A, 519(2009) 88-93.
DOI: 10.1016/j.msea.2009.05.013
Google Scholar
[8]
R.J. Jesseman, G.J. Murphy. Mechanical properties and precipitation-hardening response in ASTM A710 Grade A and A736 alloy steel plates, J. Journal of Heat Treating, 3(1984)228-236.
DOI: 10.1007/bf02833265
Google Scholar
[9]
Y.U. Heo, Y.K. Kim, J.S. Kim, et al. Phase transformation of Cu precipitates from bcc to fcc in Fe–3Si–2Cu alloy, J. Acta Materialia, 61(2013) 519-528.
DOI: 10.1016/j.actamat.2012.09.068
Google Scholar
[10]
G. Han, Z.J. Xie, Z.Y. Li, et al. Evolution of crystal structure of Cu precipitates in a low carbon steel, J. Materials & Design, 135(2017)92-101.
DOI: 10.1016/j.matdes.2017.08.054
Google Scholar
[11]
P.J. Othen, M.L. Jenkins, G.D.W. Smith. High-resolution electron microscopy studies of the structure of Cu precipitates in α-Fe, J. Philosophical magazine A, 70(1994) 1-24.
DOI: 10.1080/01418619408242533
Google Scholar
[12]
T.H. Lee, Y.O. Kim, S.J. Kim. Crystallographic model for bcc-to-9R martensitic transformation of Cu precipitates in ferritic steel, J. Philosophical Magazine, 87(2007)209-224.
DOI: 10.1080/14786430600909014
Google Scholar
[13]
S.K. Ghosh, A. Haldar, P.P. Chattopadhyay. The influence of copper addition on microstructure and mechanical properties of thermomechanically processed microalloyed steels, J. Journal of materials science, 44(2009)580-590.
DOI: 10.1007/s10853-008-3051-x
Google Scholar
[14]
G.R. Speich, W.C. Leslie. Tempering of steel, J. Metallurgical and Materials Transactions B, 3(1972)1043-1054.
DOI: 10.1007/bf02642436
Google Scholar
[15]
A. Deschamps, M. Militzer. Precipitation kinetics and strengthening of a Fe–0.8 wt% Cu alloy, J. ISIJ international, 41(2001)196-205.
DOI: 10.2355/isijinternational.41.196
Google Scholar
[16]
J. Weertman. Dislocation Model of Low Temperature Creep, J. Journal of Applied Physics, 29(1958)1685-1689.
DOI: 10.1063/1.1723025
Google Scholar
[17]
R.D.K. Misra, Z. Jia, R.O. Malley, et al. Precipitation behavior during thin slab thermomechanical processing and isothermal aging of copper-bearing niobium-microalloyed high strength structural steels: The effect on mechanical properties, J. Materials Science and Engineering A, 528(2011) 8772-8780.
DOI: 10.1016/j.msea.2011.08.047
Google Scholar