Impact of L12-Ordered Precipitation on the Strength of Alumina-Forming Austenitic Heat-Resistant Steels

Article Preview

Abstract:

Alumina-forming austenitic (AFA) heat-resistance steels firstly developed by Yamamoto et al. at Oak Ridge National Laboratory have been reported as a new promising class of steels with potential for use in high temperature applications in recent years. The creep resistance of AFA steels is improved mainly by precipitation strengthening. Besides modifying the typical existing precipitates, i.e. MC and M23C6 type carbides, B2-NiAl and Fe2Nb-type Laves phase, introduction of coherent L12-ordered precipitate is highly desired. L12-ordered phase gamma prime (γ’) is the most important precipitate for high-temperature strengthening in Ni-based superalloys. In the present work, we demonstrate that addition of 2.8 wt. % Cu to an AFA steel promotes the formation of an L12-ordered phase with the dominating elements Ni, Cu and Al. TEM characterization after slow rate tensile tests indicated there were the different precipitation behaviours at 700°C and 750°C. It was revealed that the occurrence of L12-ordered Ni-Cu-Al phase depends on temperature and Ni content. This opens up new opportunities to promote the formation of L12-ordered phase in Fe-based austenitic heat-resistance steels and benefit high-temperature mechanical properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

692-697

Citation:

Online since:

December 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Aghajani, C. Somsen, G. Eggeler, On the effect of long-term creep on the microstructure of a 12% chromium tempered martensite ferritic steel, Acta Materialia, 57 (2009) 5093-5106.

DOI: 10.1016/j.actamat.2009.07.010

Google Scholar

[2] L. Cipolla, H.K. Danielsen, D. Venditti, P.E. Di Nunzio, J. Hald, M.A.J. Somers, Conversion of MX nitrides to Z-phase in a martensitic 12% Cr steel, Acta Materialia, 58 (2010) 669-679.

DOI: 10.1016/j.actamat.2009.09.045

Google Scholar

[3] F. Abe, Strengthening Mechanisms in Creep of Advanced Ferritic Power Plant Steels Based on Creep Deformation Analysis, in: Y. Weng, H. Dong, Y. Gan (Eds.) Advanced Steels, Springer Berlin Heidelberg, 2011, pp.409-422.

DOI: 10.1007/978-3-642-17665-4_42

Google Scholar

[4] V. Viswanathan, R. Purgert, P. Rawls, Coal-fired power materials, Advanced Materials and Processes, 8 (2008) 47-49.

Google Scholar

[5] Y. Yamamoto, M.P. Brady, M.L. Santella, H. Bei, P.J. Maziasz, B.A. Pint, Overview of Strategies for High-Temperature Creep and Oxidation Resistance of Alumina-Forming Austenitic Stainless Steels, Metall and Mat Trans A, 42 (2011) 922-931.

DOI: 10.1007/s11661-010-0295-2

Google Scholar

[6] Y. Yamamoto, M.P. Brady, Z.P. Lu, P.J. Maziasz, C.T. Liu, B.A. Pint, K.L. More, H.M. Meyer, E.A. Payzant, Creep-Resistant, Al2O3-Forming Austenitic Stainless Steels, Science, 316 (2007) 433-436.

DOI: 10.1126/science.1137711

Google Scholar

[7] Y. Yamamoto, M. Takeyama, Z.P. Lu, C.T. Liu, N.D. Evans, P.J. Maziasz, M.P. Brady, Alloying effects on creep and oxidation resistance of austenitic stainless steel alloys employing intermetallic precipitates, Intermetallics, 16 (2008) 453-462.

DOI: 10.1016/j.intermet.2007.12.005

Google Scholar

[8] X. Xu, X. Zhang, X. Sun, Z.P. Lu, Effects of silicon additions on the oxide scale formation of an alumina-forming austenitic alloy, Corrosion Science, 65 (2012) 317-321.

DOI: 10.1016/j.corsci.2012.08.039

Google Scholar

[9] D.Q. Zhou, X.Q. Xu, H.H. Mao, Y.F. Yan, T.G. Nieh, Z.P. Lu, Plastic flow behaviour in an alumina-forming austenitic stainless steel at elevated temperatures, Materials Science and Engineering: A, 594 (2014) 246-252.

DOI: 10.1016/j.msea.2013.11.021

Google Scholar

[10] M. Wang, H. Sun, M.P. Phaniraj, H.N. Han, J. Jang, Z. Zhou, Evolution of microstructure and tensile properties of Fe–18Ni–12Cr based AFA steel during aging at 700 °C, Materials Science and Engineering: A, 672 (2016) 23-31.

DOI: 10.1016/j.msea.2016.06.060

Google Scholar

[11] J. Moon, T.-H. Lee, Y.-U. Heo, Y.-S. Han, J.-Y. Kang, H.-Y. Ha, D.-W. Suh, Precipitation sequence and its effect on age hardening of alumina-forming austenitic stainless steel, Materials Science and Engineering: A, 645 (2015) 72-81.

DOI: 10.1016/j.msea.2015.08.005

Google Scholar

[12] G. Trotter, B. Hu, A.Y. Sun, R. Harder, M.K. Miller, L. Yao, I. Baker, Precipitation kinetics during aging of an alumina-forming austenitic stainless steel, Materials Science and Engineering: A, 667 (2016) 147-155.

DOI: 10.1016/j.msea.2016.04.081

Google Scholar

[13] M.P. Brady, J. Magee, Y. Yamamoto, D. Helmick, L. Wang, Co-optimization of wrought alumina-forming austenitic stainless steel composition ranges for high-temperature creep and oxidation/corrosion resistance, Materials Science and Engineering: A, 590 (2014) 101-115.

DOI: 10.1016/j.msea.2013.10.014

Google Scholar

[14] J. Moon, M.-H. Jang, J.-Y. Kang, T.-H. Lee, The negative effect of Zr addition on the high temperature strength in alumina-forming austenitic stainless steels, Materials Characterization, 87 (2014) 12-18.

DOI: 10.1016/j.matchar.2013.10.029

Google Scholar

[15] M.-H. Jang, J. Moon, J.-Y. Kang, H.-Y. Ha, B.G. Choi, T.-H. Lee, C. Lee, Effect of tungsten addition on high-temperature properties and microstructure of alumina-forming austenitic heat-resistant steels, Materials Science and Engineering: A, 647 (2015) 163-169.

DOI: 10.1016/j.msea.2015.09.018

Google Scholar

[16] K.A. Terrani, C.M. Parish, D. Shin, B.A. Pint, Protection of zirconium by alumina- and chromia-forming iron alloys under high-temperature steam exposure, Journal of Nuclear Materials, 438 (2013) 64-71.

DOI: 10.1016/j.jnucmat.2013.03.006

Google Scholar

[17] M.-H. Jang, J.-Y. Kang, J.H. Jang, T.-H. Lee, C. Lee, The role of phosphorus in precipitation behavior and its effect on the creep properties of alumina-forming austenitic heat-resistant steels, Materials Science and Engineering: A, 684 (2017) 14-21.

DOI: 10.1016/j.msea.2016.12.021

Google Scholar

[18] Y. Yamamoto, G. Muralidharan, M.P. Brady, Development of L1(2)-ordered Ni-3(Al,Ti)-strengthened alumina-forming austenitic stainless steel alloys, Scripta Materialia, 69 (2013) 816-819.

DOI: 10.1016/j.scriptamat.2013.09.005

Google Scholar

[19] B. Zhao, J. Fan, Y. Liu, L. Zhao, X. Dong, F. Sun, L. Zhang, Formation of L12-ordered precipitation in an alumina-forming austenitic stainless steel via Cu addition and its contribution to creep/rupture resistance, Scripta Materialia, 109 (2015) 64-67.

DOI: 10.1016/j.scriptamat.2015.07.019

Google Scholar

[20] B. Zhao, K. Chang, J. Fan, Z. Chen, X. Dong, L. Zhang, Annealing effects on precipitation and high-temperature properties of a Cu-containing alumina-forming austenitic steel, Materials Letters, 176 (2016) 83-86.

DOI: 10.1016/j.matlet.2016.04.110

Google Scholar

[21] B. Zhao, J. Fan, Z. Chen, X. Dong, F. Sun, L. Zhang, Evolution of precipitates in a Cu-containing alumina-forming austenitic steel after short-term mechanical tests, Materials Characterization, 125 (2017) 37-45.

DOI: 10.1016/j.matchar.2017.01.023

Google Scholar

[22] B. Hu, G. Trotter, Z. Wang, S. Chen, Z. Cai, I. Baker, Effect of boron and carbon addition on microstructure and mechanical properties of the aged gamma-prime strengthened alumina-forming austenitic alloys, Intermetallics, 90 (2017) 36-49.

DOI: 10.1016/j.intermet.2017.06.011

Google Scholar

[23] D. Baither, T. Krol, E. Nembach, In-situ transmission electron microscopy study of dislocation processes at precipitate-free zones in a γ '-strengthened superalloy, Philos. Mag., 83 (2003) 4011-4029.

DOI: 10.1080/14786430310001603445

Google Scholar