[1]
A. Aghajani, C. Somsen, G. Eggeler, On the effect of long-term creep on the microstructure of a 12% chromium tempered martensite ferritic steel, Acta Materialia, 57 (2009) 5093-5106.
DOI: 10.1016/j.actamat.2009.07.010
Google Scholar
[2]
L. Cipolla, H.K. Danielsen, D. Venditti, P.E. Di Nunzio, J. Hald, M.A.J. Somers, Conversion of MX nitrides to Z-phase in a martensitic 12% Cr steel, Acta Materialia, 58 (2010) 669-679.
DOI: 10.1016/j.actamat.2009.09.045
Google Scholar
[3]
F. Abe, Strengthening Mechanisms in Creep of Advanced Ferritic Power Plant Steels Based on Creep Deformation Analysis, in: Y. Weng, H. Dong, Y. Gan (Eds.) Advanced Steels, Springer Berlin Heidelberg, 2011, pp.409-422.
DOI: 10.1007/978-3-642-17665-4_42
Google Scholar
[4]
V. Viswanathan, R. Purgert, P. Rawls, Coal-fired power materials, Advanced Materials and Processes, 8 (2008) 47-49.
Google Scholar
[5]
Y. Yamamoto, M.P. Brady, M.L. Santella, H. Bei, P.J. Maziasz, B.A. Pint, Overview of Strategies for High-Temperature Creep and Oxidation Resistance of Alumina-Forming Austenitic Stainless Steels, Metall and Mat Trans A, 42 (2011) 922-931.
DOI: 10.1007/s11661-010-0295-2
Google Scholar
[6]
Y. Yamamoto, M.P. Brady, Z.P. Lu, P.J. Maziasz, C.T. Liu, B.A. Pint, K.L. More, H.M. Meyer, E.A. Payzant, Creep-Resistant, Al2O3-Forming Austenitic Stainless Steels, Science, 316 (2007) 433-436.
DOI: 10.1126/science.1137711
Google Scholar
[7]
Y. Yamamoto, M. Takeyama, Z.P. Lu, C.T. Liu, N.D. Evans, P.J. Maziasz, M.P. Brady, Alloying effects on creep and oxidation resistance of austenitic stainless steel alloys employing intermetallic precipitates, Intermetallics, 16 (2008) 453-462.
DOI: 10.1016/j.intermet.2007.12.005
Google Scholar
[8]
X. Xu, X. Zhang, X. Sun, Z.P. Lu, Effects of silicon additions on the oxide scale formation of an alumina-forming austenitic alloy, Corrosion Science, 65 (2012) 317-321.
DOI: 10.1016/j.corsci.2012.08.039
Google Scholar
[9]
D.Q. Zhou, X.Q. Xu, H.H. Mao, Y.F. Yan, T.G. Nieh, Z.P. Lu, Plastic flow behaviour in an alumina-forming austenitic stainless steel at elevated temperatures, Materials Science and Engineering: A, 594 (2014) 246-252.
DOI: 10.1016/j.msea.2013.11.021
Google Scholar
[10]
M. Wang, H. Sun, M.P. Phaniraj, H.N. Han, J. Jang, Z. Zhou, Evolution of microstructure and tensile properties of Fe–18Ni–12Cr based AFA steel during aging at 700 °C, Materials Science and Engineering: A, 672 (2016) 23-31.
DOI: 10.1016/j.msea.2016.06.060
Google Scholar
[11]
J. Moon, T.-H. Lee, Y.-U. Heo, Y.-S. Han, J.-Y. Kang, H.-Y. Ha, D.-W. Suh, Precipitation sequence and its effect on age hardening of alumina-forming austenitic stainless steel, Materials Science and Engineering: A, 645 (2015) 72-81.
DOI: 10.1016/j.msea.2015.08.005
Google Scholar
[12]
G. Trotter, B. Hu, A.Y. Sun, R. Harder, M.K. Miller, L. Yao, I. Baker, Precipitation kinetics during aging of an alumina-forming austenitic stainless steel, Materials Science and Engineering: A, 667 (2016) 147-155.
DOI: 10.1016/j.msea.2016.04.081
Google Scholar
[13]
M.P. Brady, J. Magee, Y. Yamamoto, D. Helmick, L. Wang, Co-optimization of wrought alumina-forming austenitic stainless steel composition ranges for high-temperature creep and oxidation/corrosion resistance, Materials Science and Engineering: A, 590 (2014) 101-115.
DOI: 10.1016/j.msea.2013.10.014
Google Scholar
[14]
J. Moon, M.-H. Jang, J.-Y. Kang, T.-H. Lee, The negative effect of Zr addition on the high temperature strength in alumina-forming austenitic stainless steels, Materials Characterization, 87 (2014) 12-18.
DOI: 10.1016/j.matchar.2013.10.029
Google Scholar
[15]
M.-H. Jang, J. Moon, J.-Y. Kang, H.-Y. Ha, B.G. Choi, T.-H. Lee, C. Lee, Effect of tungsten addition on high-temperature properties and microstructure of alumina-forming austenitic heat-resistant steels, Materials Science and Engineering: A, 647 (2015) 163-169.
DOI: 10.1016/j.msea.2015.09.018
Google Scholar
[16]
K.A. Terrani, C.M. Parish, D. Shin, B.A. Pint, Protection of zirconium by alumina- and chromia-forming iron alloys under high-temperature steam exposure, Journal of Nuclear Materials, 438 (2013) 64-71.
DOI: 10.1016/j.jnucmat.2013.03.006
Google Scholar
[17]
M.-H. Jang, J.-Y. Kang, J.H. Jang, T.-H. Lee, C. Lee, The role of phosphorus in precipitation behavior and its effect on the creep properties of alumina-forming austenitic heat-resistant steels, Materials Science and Engineering: A, 684 (2017) 14-21.
DOI: 10.1016/j.msea.2016.12.021
Google Scholar
[18]
Y. Yamamoto, G. Muralidharan, M.P. Brady, Development of L1(2)-ordered Ni-3(Al,Ti)-strengthened alumina-forming austenitic stainless steel alloys, Scripta Materialia, 69 (2013) 816-819.
DOI: 10.1016/j.scriptamat.2013.09.005
Google Scholar
[19]
B. Zhao, J. Fan, Y. Liu, L. Zhao, X. Dong, F. Sun, L. Zhang, Formation of L12-ordered precipitation in an alumina-forming austenitic stainless steel via Cu addition and its contribution to creep/rupture resistance, Scripta Materialia, 109 (2015) 64-67.
DOI: 10.1016/j.scriptamat.2015.07.019
Google Scholar
[20]
B. Zhao, K. Chang, J. Fan, Z. Chen, X. Dong, L. Zhang, Annealing effects on precipitation and high-temperature properties of a Cu-containing alumina-forming austenitic steel, Materials Letters, 176 (2016) 83-86.
DOI: 10.1016/j.matlet.2016.04.110
Google Scholar
[21]
B. Zhao, J. Fan, Z. Chen, X. Dong, F. Sun, L. Zhang, Evolution of precipitates in a Cu-containing alumina-forming austenitic steel after short-term mechanical tests, Materials Characterization, 125 (2017) 37-45.
DOI: 10.1016/j.matchar.2017.01.023
Google Scholar
[22]
B. Hu, G. Trotter, Z. Wang, S. Chen, Z. Cai, I. Baker, Effect of boron and carbon addition on microstructure and mechanical properties of the aged gamma-prime strengthened alumina-forming austenitic alloys, Intermetallics, 90 (2017) 36-49.
DOI: 10.1016/j.intermet.2017.06.011
Google Scholar
[23]
D. Baither, T. Krol, E. Nembach, In-situ transmission electron microscopy study of dislocation processes at precipitate-free zones in a γ '-strengthened superalloy, Philos. Mag., 83 (2003) 4011-4029.
DOI: 10.1080/14786430310001603445
Google Scholar