[1]
L. Facchini, N. Vicente, I. Lonardelli, E. Magalini, P. Robotti, A. Molinari, Metastable austenite in 17–4 precipitation‐hardening stainless steel produced by selective laser melting, Advanced Engineering Materials 12(3) (2010) 184-188.
DOI: 10.1002/adem.200900259
Google Scholar
[2]
J. Wang, H. Zou, C. Li, S. Qiu, B. Shen, The spinodal decomposition in 17-4PH stainless steel subjected to long-term aging at 350 °C, Materials Characterization 59(5) (2008) 587-591.
DOI: 10.1016/j.matchar.2007.04.018
Google Scholar
[3]
P.G.E. Jerrard, L. Hao, K.E. Evans, Experimental investigation into selective laser melting of austenitic and martensitic stainless steel powder mixtures, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 223(11) (2009) 1409-1416.
DOI: 10.1243/09544054jem1574
Google Scholar
[4]
L. Facchini, Metastable Austenite in 17–4 Precipitation‐Hardening Stainless Steel Produced by Selective Laser Melting, Advanced Engineering Materials (2010) 184-188.
DOI: 10.1002/adem.200900259
Google Scholar
[5]
L.E. Murr, E. Martinez, J. Hernandez, S. Collins, K.N. Amato, S.M. Gaytan, P.W. Shindo, Microstructures and Properties of 17-4 PH Stainless Steel Fabricated by Selective Laser Melting, Journal of Materials Research and Technology 1(3) (2012) 167-177.
DOI: 10.1016/s2238-7854(12)70029-7
Google Scholar
[6]
A. Yadollahi, N. Shamsaei, S.M. Thompson, A. Elwany, L. Bian, Effects of building orientation and heat treatment on fatigue behavior of selective laser melted 17-4 PH stainless steel, International Journal of Fatigue 94, Part 2 (2017) 218-235.
DOI: 10.1016/j.ijfatigue.2016.03.014
Google Scholar
[7]
H.K. Rafi, D. Pal, N. Patil, T.L. Starr, B.E. Stucker, Microstructure and Mechanical Behavior of 17-4 Precipitation Hardenable Steel Processed by Selective Laser Melting, Journal of Materials Engineering and Performance 23(12) (2014) 4421-4428.
DOI: 10.1007/s11665-014-1226-y
Google Scholar
[8]
B. AlMangour, and Jenn-Ming Yang, Understanding the deformation behavior of 17-4 precipitate hardenable stainless steel produced by direct metal laser sintering using micropillar compression and TEM, The International Journal of Advanced Manufacturing Technology (2016) 1-8.
DOI: 10.1007/s00170-016-9367-9
Google Scholar
[9]
R.M. German, Powder Metallurgy and Particulate Materials Processing, Metal Powder Federation Industries (MPIF), Princeton (2005).
Google Scholar
[10]
S. Hoeges, A. Zwiren, C. Schade, Additive manufacturing using water atomized steel powders, Metal Powder Report.
DOI: 10.1016/j.mprp.2017.01.004
Google Scholar
[11]
H. Nakagawa, T. Miyazaki, H. Yokota, Effects of aging temperature on the microstructure and mechanical properties of 1.8Cu-7.3Ni-15.9Cr-1.2Mo-low C, N martensitic precipitation hardening stainless steel, Journal of Materials Science 35(9) (2000) 2245-2253.
Google Scholar
[12]
J. Wang, H. Zou, C. Li, Y. Peng, S. Qiu, B. Shen, The microstructure evolution of type 17-4PH stainless steel during long-term aging at 350 °C, Nuclear Engineering and Design 236(24) (2006) 2531-2536.
DOI: 10.1016/j.nucengdes.2006.03.017
Google Scholar
[13]
H. Irrinki, M. Dexter, B. Barmore, R. Enneti, S. Pasebani, S. Badwe, J. Stitzel, R. Malhotra, S.V. Atre, Effects of Powder Attributes and Laser Powder Bed Fusion (L-PBF) Process Conditions on the Densification and Mechanical Properties of 17-4 PH Stainless Steel, JOM 68(3) (2016) 860-868.
DOI: 10.1007/s11837-015-1770-4
Google Scholar
[14]
H.-J. Sung, T.K. Ha, S. Ahn, Y.W. Chang, Powder injection molding of a 17-4 PH stainless steel and the effect of sintering temperature on its microstructure and mechanical properties, Journal of Materials Processing Technology 130–131 (2002) 321-327.
DOI: 10.1016/s0924-0136(02)00739-2
Google Scholar