Preparation and Properties of Chitosan-Tranexamic Acid Salts

Article Preview

Abstract:

The solid chitosan-tranexamic acid salts were successfully prepared by the method of half-wet grinding with chitosan and tranexamic acid as raw materials. The physical properties including water solubility and stability of the prepared samples were tested, and their structures were characterized by Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD). In addition, the in vitro pro-coagulant activity was evaluated by the test tube method. The results showed that the prepared chitosan-tranexamic acid salts could be dissolved in weak acidic, neutral and weak alkaline aqueous solutions, expanding the dissolution range. The characterization results indicated that the protonation reaction of the chitosan amino group was achieved without solvent and the crystallinity degree of chitosan-tranexamic acid salts decreased by comparison with chitosan. The hemostasis evaluation showed that chitosan-tranexamic acid salts with different mass ratios had pro-coagulant activities in vitro. In particular, the clotting time of chitosan acid salt with mass ratio of 1:2 was shorter than that of Yunnan Baiyao. This effort laid the foundation for the development of the promising chitosan-based hemostatic materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

129-134

Citation:

Online since:

January 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Zhao, B. Guo, H. Wu, Y. Liang, P.X. Ma, Injectable antibacterial conductive nanocomposite cryogels with rapid shape recovery for noncompressible hemorrhage and wound healing, Nat. Commun. 9(2018) 2784.

DOI: 10.1038/s41467-018-04998-9

Google Scholar

[2] R. Gu, W. Sun, H. Zhou, Z. Wu, Z. Meng, X. Zhu, Q. Tang, J. Dong, G. Dou, The performance of a fly-larva shell-derived chitosan sponge as an absorbable surgical hemostatic agent, Biomaterials 31(2010) 1270-1277.

DOI: 10.1016/j.biomaterials.2009.10.023

Google Scholar

[3] A. Muxika, A. Etxabide, J. Uranga, P. Guerrero, K. de la Caba, Chitosan as a bioactive polymer: processing, properties and applications, Int. J. Biol. Macromol. 105(2017) 1358-1368.

DOI: 10.1016/j.ijbiomac.2017.07.087

Google Scholar

[4] I. Hamed, F. Özogul, J.M. Regenstein, Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): A review, Trends Food Sci. Technol. 48(2016) 40-50.

DOI: 10.1016/j.tifs.2015.11.007

Google Scholar

[5] J. Benesch, P. Tengvall, Blood protein adsorption onto chitosan, Biomaterials 23(2002) 2561-2568.

DOI: 10.1016/s0142-9612(01)00391-x

Google Scholar

[6] Z. Hu, D.Y. Zhang, S.T. Lu, P.W. Li, S.D. Li, Chitosan-based composite materials for prospective hemostatic applications, Mar. Drugs 16(2018) 273.

DOI: 10.3390/md16080273

Google Scholar

[7] S.F. Antonov, E.V. Kryzhanovskaya, Y.I. Filippov, S.M. Shinkarev, M.A. Frolova, Study of wound-healing properties of chitosan, Russ. Agr. Sci. 34(2008) 426-427.

DOI: 10.3103/s1068367408060190

Google Scholar

[8] S. Saladino, E.R. Di Leonardo, M. Salamone, D. Mercuri, F. Segatti, G. Ghersi, Formulation of different chitosan hydrogels for cartilage tissue repair, Chem. Eng. Trans. 38(2014) 505-510.

Google Scholar

[9] R. Logithkumar, A. Keshavnarayan, S. Dhivya, A. Chawla, S. Saravanan, N. Selvamurugan, A review of chitosan and its derivatives in bone tissue engineering, Carbohydr. Polym. 151(2016) 172-188.

DOI: 10.1016/j.carbpol.2016.05.049

Google Scholar

[10] L. Xing, Y.T. Fan T.J. Zhou J.H. Gong L.H. Cui, K.H. Cho, Y.J. Choi, H.L. Jiang, C.S. Cho, Chemical modification of chitosan for efficient vaccine delivery, Molecules 23 (2018) 229.

DOI: 10.3390/molecules23020229

Google Scholar

[11] Q. Yuan, J. Shah, S. Hein, R.D.K. Misra, Controlled and extended drug release behavior of chitosan-based nanoparticle carrier, Acta Biomater. 6(2010) 1140-1148.

DOI: 10.1016/j.actbio.2009.08.027

Google Scholar

[12] A. Lagarto, N. Merino, O. Valdes, J. Dominguez, E. Spencer, N. de la Paz, G. Aparicio, Safety evaluation of chitosan and chitosan acid salts from Panurilus argus lobster, Int. J. Biol. Macromol. 72 (2015) 1343-1350.

DOI: 10.1016/j.ijbiomac.2014.10.030

Google Scholar

[13] C.R. Mohan, R. Sathya, P. Nithiananthi, K. Jayakumar, Ultrasonic velocimetry studies on different salts of chitosan: effect of ion size, Int. J. Biol. Macromol. 104 (2017) 1596-1603.

DOI: 10.1016/j.ijbiomac.2017.02.049

Google Scholar

[14] Y. Murata, K. Nagaki, K. Kofuji, T. Kishi, Functions of chitosan-ferulic acid salt for prevention of hypertension, Food Sci. Technol. Res., 16 (2010) 437-442.

DOI: 10.3136/fstr.16.437

Google Scholar

[15] P.L. McCormack, Tranexamic acid: a review of its use in the treatment of hyperfibrinolysis, Drugs 72(2012) 585-617.

DOI: 10.2165/11209070-000000000-00000

Google Scholar

[16] P. Zhang, J. He, Y. Fang, P. Chen, Y. Liang, J. Wang, Efficacy and safety of intravenous tranexamic acid administration in patients undergoing hip fracture surgery for hemostasis: A meta-analysis, Medicine 96(2017) e6940.

DOI: 10.1097/md.0000000000006940

Google Scholar

[17] Z. Hu, P. Hong, M. Liao, S. Kong, N. Huang, C. Ou, S. Li, Preparation and characterization of chitosan-agarose composite films, Materials, 9 (2016) 816.

DOI: 10.3390/ma9100816

Google Scholar

[18] S.S. Bhattacharya, S. Banerjee, P. Chowdhury, A. Ghosh, R.R. Hegde, R. Mondal, Tranexamic acid loaded gellan gum-based polymeric microbeads for controlled release: in vitro and in vivo assessment. Colloids Surf. B 112(2013) 483-491.

DOI: 10.1016/j.colsurfb.2013.07.054

Google Scholar