[1]
Ambastha, A.K., Thermal Recovery Well Test Design and Interpretation. Spe Formation Evaluation, 1989. 4(4): 173-180.
DOI: 10.2118/16746-pa
Google Scholar
[2]
Tang, Z., Y. Zhou, and J. Jia, Technology for Improving Life of Thermal Recovery Well Casing. Advances in Petroleum Exploration & Development, 2013. 5(1).
Google Scholar
[3]
Guo, C.S., et al., Research on Heat and Mass Transfer Characteristics of Steam Injection Thermal Recovery by Horizontal Well in Star Stage. Journal of Engineering Thermophysics, (2016).
Google Scholar
[4]
Zhu, X., S. Liu, and H. Tong, Plastic limit analysis of defective casing for thermal recovery wells. Engineering Failure Analysis, 2013. 27(1): 340-349.
DOI: 10.1016/j.engfailanal.2012.07.011
Google Scholar
[5]
Nowinka, J., T.M.V. Kaiser, and B. Lepper, Strain-Based Design of Tubulars for Extreme-Service Wells. Spe Drilling & Completion, 2008. 23(4): 353-360.
DOI: 10.2118/105717-pa
Google Scholar
[6]
Chakraborti, P.C. and M.K. Mitra, Room temperature low cycle fatigue behaviour of two high strength lamellar duplex ferrite–martensite (DFM) steels. International Journal of Fatigue, 2005. 27(5): 511-518.
DOI: 10.1016/j.ijfatigue.2004.09.003
Google Scholar
[7]
Sankaran, S., V.S. Sarma, and K.A. Padmanabhan, Low cycle fatigue behavior of a multiphase microalloyed medium carbon steel: comparison between ferrite–pearlite and quenched and tempered microstructures. Materials Science & Engineering A, 2003. 345(1–2): 328-335.
DOI: 10.1016/s0921-5093(02)00511-7
Google Scholar
[8]
Chiu, P.K., et al., Low-cycle fatigue-induced martensitic transformation in SAF 2205 duplex stainless steel. Materials Science & Engineering A, 2005. 398(1–2): 349-359.
DOI: 10.1016/j.msea.2005.03.096
Google Scholar
[9]
Paul, S.K., et al., The effect of low cycle fatigue, ratcheting and mean stress relaxation on stress–strain response and microstructural development in a dual phase steel. International Journal of Fatigue, 2015. 80: 341-348.
DOI: 10.1016/j.ijfatigue.2015.06.003
Google Scholar
[10]
Nikulin, I., et al., Effect of strain amplitude on the low-cycle fatigue behavior of a new Fe–15Mn–10Cr–8Ni–4Si seismic damping alloy. International Journal of Fatigue, 2016. 88: 132-141.
DOI: 10.1016/j.ijfatigue.2016.03.021
Google Scholar
[11]
Manson, S.S., Interfaces between fatigue, creep, and fracture. International Journal of Fracture Mechanics, 1966. 2(1): 327-363.
DOI: 10.1007/bf00698478
Google Scholar
[12]
Carter, D.R., et al., Fatigue Behavior of Adult Cortical Bone: The Influence of Mean Strain and Strain Range. Acta Orthopaedica Scandinavica, 1981. 52(5): 481.
DOI: 10.3109/17453678108992136
Google Scholar
[13]
Hao, H., et al., A study on the mean stress relaxation behavior of 2124-T851 aluminum alloy during low-cycle fatigue at different strain ratios. Materials & Design, 2015. 67: 272-279.
DOI: 10.1016/j.matdes.2014.11.018
Google Scholar
[14]
Kun, F., et al., Universality behind Basquin's Law of Fatigue. Physical Review Letters, 2008. 100(9): 094301.
Google Scholar
[15]
Manson, S.S., Fatigue: A complex subject—Some simple approximations. Experimental Mechanics, 1965. 5(4): 193-226.
Google Scholar
[16]
Coffin, L.F.J., A study of the effects of cyclic thermal stresses on a ductile metal. Ryūmachi. [Rheumatism], 1953. 22(6): 419-606.
Google Scholar
[17]
Niesłony, A., et al., New method for evaluation of the Manson–Coffin–Basquin and Ramberg–Osgood equations with respect to compatibility. International Journal of Fatigue, 2008. 30(10–11): 1967-1977.
DOI: 10.1016/j.ijfatigue.2008.01.012
Google Scholar
[18]
Shimada, K., J. Komotori, and M. Shimizu, The applicability of the Manson-Coffin law and Miner's law to extremely low cycle fatigue. Nihon Kikai Gakkai Ronbunshu A Hen/transactions of the Japan Society of Mechanical Engineers Part A, 1987. 53(491): 1178-1185.
DOI: 10.1299/kikaia.53.1178
Google Scholar
[19]
Koh, S.K., Fatigue damage evaluation of a high pressure tube steel using cyclic strain energy density. International Journal of Pressure Vessels & Piping, 2002. 79(12): 791-798.
DOI: 10.1016/s0308-0161(02)00135-7
Google Scholar
[20]
Iannitti, G., et al. Modeling ductile metals under large strain, pressure and high strain rates incorporating damage and microstructure evolution. (2012).
DOI: 10.1063/1.3686453
Google Scholar