A Novel Approach for the Recycling and Reusing of Silicon Slurry Waste

Article Preview

Abstract:

In silicon wafer manufacturing for solar cells, the hazardous sawing waste results in serious environmental problems. In this paper, a novel approach for the recycling and reusing of slurry waste is reported. The results show that slurry waste is recycled and reused completely, and composite material of Si3N4-Si2N2O-SiC is prepared. The residual gas from oxygen enrich gas production is used, which reduced cost effectively. In addition, the reaction is exothermic, which is also energy saving and ensure the production to be continuous without external heat source. The mechanism was also discussed in this paper.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1234-1239

Citation:

Online since:

January 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Takeuchi M, Sakamoto Y, Niwa S. Study on CO2 global recycling system. Sci Total Environ. 2001; 277: 15-19.

DOI: 10.1016/s0048-9697(01)00830-0

Google Scholar

[2] Klugmann-Radziemska E, Ostrowski P. Chemical treatment of crystalline silicon solar cells as a method of recovering pure silicon from photovoltaic modules. Renew Energ. 2010; 35: 1751-1759.

DOI: 10.1016/j.renene.2009.11.031

Google Scholar

[3] Sarti D, Einhaus R. Silicon feedstock for the multi-crystalline photovoltaic industry. Sol Energ Mat Sol C. 2002; 72: 27-40.

DOI: 10.1016/s0927-0248(01)00147-7

Google Scholar

[4] Tai T. Silicon sawing waste treatment by electrophoresis and gravitational settling. J Hazard Mater. 2011; 189: 526-530.

DOI: 10.1016/j.jhazmat.2011.02.070

Google Scholar

[5] Wang TY, Lin YC, Tai CY, et al. A novel approach for recycling of the kerf loss silicon from cutting slurry waste for solar cell application. J Cryst Growth. 2008; 310: 3403-3406.

DOI: 10.1016/j.jcrysgro.2008.04.031

Google Scholar

[6] Wang C, Emoto H, Mitomo M. Nuclear and growth of silicon oxynitride grains in fine grained silicon nitride matrix. J Am Ceram Soc. 1998; 81: 1125-1132.

DOI: 10.1111/j.1151-2916.1998.tb02459.x

Google Scholar

[7] Lee BT, Yoo JH, Kim HD. Size effect of raw Si powder on microstructure and mechanical properties of RBSN and GPSed-RBSN bodies. Mat Sci Eng A. 2002; 333: 306-313.

DOI: 10.1016/s0921-5093(01)01855-x

Google Scholar

[8] Islam S, Kim M, Lee B. Fabrication and characterization of porous unidirectional Si3N2O–Si3N4 composite. Mater Lett. 2009; 63: 168-175.

Google Scholar

[9] Lee BT, Kim HD. Effect of sintering additives on the nitridation behavior of reaction-bonded silicon nitride. Mat Sci Eng A. 2004; 364: 126-131.

DOI: 10.1016/j.msea.2003.07.005

Google Scholar

[10] Xie RJ, Mitomo M, Kim W, et al. Texture development in silicon nitride-silicon oxynitride in situ composites via superplastic deformation. J Am Ceram Soc. 2000; 83: 3147-3152.

DOI: 10.1111/j.1151-2916.2000.tb01696.x

Google Scholar

[11] Xie RJ, Mitomo M, Xu FF, et al. Microstructure and mechanical properties of superplastically deformed silicon nitride-silicon oxynitride in situ composites. J Eur Ceram Soc. 2002; 22: 963-971.

DOI: 10.1016/s0955-2219(01)00401-0

Google Scholar

[12] Emoto H, Mitomo M, Wang CM, et al. Fabrication of silicon nitride-silicon oxynitride in-situ composites. J Eur Ceram Soc. 1998; 18: 527-533.

DOI: 10.1016/s0955-2219(97)00155-6

Google Scholar

[13] Julia E F, Richard S, Gary M et al. Determination of Si2p electron attenuation lengths in SiO2. J Ele Spectro & Related Phenom. 1992; 2(60): 117-125.

Google Scholar

[14] Kim K H, Lee J D, Kang J S, Fe3Si Phase Formation at Fe/Si(111)-7×7 Interface at Room Temperature Studied by Semiempirical Theory. JPN J Appl Phys. 1998; 37(9A): 235-241.

DOI: 10.1143/jjap.37.4949

Google Scholar

[15] Marie D, Geoffroy D, Steydli S, et al. In-situ formation of SiC nanocrystals by high temperature annealing of SiO2/Si under CO: A photoemission study. Surf Sci. 2012; 606(7-8): 697-701.

DOI: 10.1016/j.susc.2011.12.006

Google Scholar

[16] Haasch R T, Patscheider  J, Hellgren N, The Si3N4/TiN Interface: 2. Si3N4/TiN(001) Grown with a-7V Substrate Bias and Analyzed In situ using Angle-resolved X-ray Photoelectron Spectroscopy. Surf Sci Spectra. 2012; 19(19): 52-56.

DOI: 10.1116/11.20121003

Google Scholar

[17] Li YL,Hu ZQ. Thermodynamic calculation of Si3N4-SiC Phase equlibrium. J Mater Sci Technol. 1995: 11: 466-468.

Google Scholar